• Title/Summary/Keyword: marker assisted selection

Search Result 213, Processing Time 0.021 seconds

Detection of Mendelian and Parent-of-origin Quantitative Trait Loci for Meat Quality in a Cross between Korean Native Pig and Landrace

  • Choi, B.H.;Lee, Y.M.;Alam, M.;Lee, J.H.;Kim, T.H.;Kim, K.S.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1644-1650
    • /
    • 2011
  • This study was conducted to detect quantitative trait loci (QTL) affecting meat quality in an $F_2$ reference population of Korean native pig and Landrace crossbreds. The three-generation mapping population was generated with 411 progeny from 38 $F_2$ full-sib families, and 133 genetic markers were used to produce a sex-average map of the 17 autosomes. The data set was analyzed using least squares Mendelian and parent-of-origin interval-mapping models. Lack-of-fit tests between models were used to characterize the QTL for mode of gene expressions. A total of 10 (32) QTL were detected at the 5% genome (chromosome)-wise level for the analyzed traits. Of the 42 QTL detected, 13 QTL were classified as Mendelian, 10 as paternal, 14 as maternal, and 5 as partial expressed QTL, respectively. Among the QTL detected at 5% genome-wise level, four QTL had Mendelian mode of inheritance on SSCs 5, 10, 12, and 13 for cooking loss, drip loss, crude lipid and crude protein, respectively; two QTL maternal inheritance for pH at 24-h and shear force on SSC11; three QTL paternal inheritance for CIE b and Hunter b on SSC9 and for cooking loss on SSC15; and one QTL partial expression for crude ash on SSC13, respectively. Most of the Mendelian QTL (9 of 13) had a dominant mode of gene action, suggesting potential utilization of heterosis for genetic improvement of meat quality within the cross population via marker-assisted selection.

Identification of SNPs in TG and EDG1 genes and their relationships with carcass traits in Korean cattle (Hanwoo) (한우에서 TG와 EDG1 유전자의 단일염기다형 확인 및 도체형질과의 연관성 분석)

  • Cahyadi, Muhammad;Maharani, Dyah;Ryoo, Seung Heui;Lee, Seung Hwan;Lee, Jun Heon
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.349-355
    • /
    • 2012
  • Thyroglobulin (TG) gene was known to be regulated fat cell growth and differentiation and the endothelial differentiation sphingolipid G-protein-coupled receptor 1 (EDG1) gene involves blood vessel formation and known to be affecting carcass traits in beef cattle. The aim of this study was to identify the single nucleotide polymorphisms (SNPs) in both TG and EDG1 genes and to analyze the association with carcass traits in Korean cattle (Hanwoo). The T354C SNP in TG gene located at the 3' flanking region and c.-312A>G SNP located at 3'-UTR of EDG1 gene were used for genotyping the animals using PCR-RFLP method. Three genotypes were identified in T354C SNP in TG gene and only two AA and AG genotypes were observed for the c.-312A>G SNP in EDG1 gene. The results indicated that T354C SNP in TG gene was not significantly associated with carcass traits. However, the c.-312A>G SNP in EDG1 gene had significant effects on backfat thickness (BF) and yield index (YI). These results may provide valuable information for further candidate gene studies affecting carcass traits in Korean cattle and may use as marker assisted selection for improving the quality of meat in Hanwoo.

Identification and characterization of QTLs and QTL interactions for Macro- and Micro-elements in rice (Oryza sativa L.) grain

  • Qin, Yang;Kim, Suk-Man;Sohn, Jae-Keun
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.257-263
    • /
    • 2008
  • Improvement of the macro- and micro-elements density of rice (Oryza sativa L.) is gradually becoming a new breeding objective. In this study, the genomic regions associated with potassium, calcium, magnesium and iron content in rice grain were identified and characterized by using a doubled haploid (DH) population. Fifty-six simple sequence repeat (SSR) and one hundred and twelve sequence tagged site (STS) markers were selected to construct the genetic linkage map of the DH population with a full length of 1808.3cM scanning 12 rice chromosomes. Quantitative trait loci (QTLs) were detected, and QTL effects and QTL interactions were calculated for five traits related to macro- and micro-elements in the DH population from a cross between 'Samgang' (Tongil) and 'Nagdong' (Japonica). Twelve QTLs were located on five chromosomes, consisting of two QTLs for potassium, three QTLs for calcium, two QTLs for magnesium, one QTL for iron content and four QTLs for the ratio of magnesium to potassium (Mg/K). Among them, qca1.1 was detected on chromosome 1 with an LOD value of 8.58 for calcium content. It explained 27% of phenotype variations with increasing effects from 'Samgang' allele. Furthermore, fifteen epistatic combinations with significant interactions were observed on ten chromosomes for five traits, which totally accounted for 4.19% to 12.72% of phenotype variations. The screening of relatively accurate QTLs will contribute to increase the efficiency of marker-assisted selection (MAS), and to accelerate the establishment of near-isogenic lines (NILs) and QTL pyramiding.

High-throughput SNP Genotyping by Melting Curve Analysis for Resistance to Southern Root-knot Nematode and Frogeye Leaf Spot in Soybean

  • Ha, Bo-Keun;Boerma, H. Roger
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.91-100
    • /
    • 2008
  • Melting curve analysis of fluorescently labeled DNA fragments is used extensively for genotyping single nucleotide polymorphism(SNP). Here, we evaluated a SNP genotyping method by melting curve analysis with the two probe chemistries in a 384-well plate format on a Roche LightCycler 480. The HybProbe chemistry is based on the fluorescence resonance energy transfer(FRET) and the SimpleProbe chemistry uses a terminal self-quenching fluorophore. We evaluated FRET HybProbes and SimpleProbes for two SNP sites closely linked to two quantitative trait loci(QTL) for southern root-knot nematode resistance. These probes were used to genotype the two parents and 94 $F_2$ plants from the cross of PI 96354$\times$Bossier. The SNP genotypes of all samples determined by the LightCycler software agreed with previously determined SSR genotypes and the SNP genotypes determined on a Luminex 100 flow cytometry instrument. Multiplexed HybProbes for the two SNPs showed a 98.4% success rate and 100% concordance between repeats two of the same 96 DNA samples. Also, we developed a HybProbe assay for the Rcs3 gene conditioning broad resistance to the frogeye leaf spot(FLS) disease. The LightCycler 480 provides rapid PCR on 384-well plate and allows simultaneous amplification and analysis in approximately 2 hours without any additional steps after amplification. This allowed for a reduction of the potential contamination of PCR products, simplicity, and enablement of a streamlined workflow. The melting curve analysis on the LightCycler 480 provided high-throughput and rapid SNP genotyping and appears highly effective for marker-assisted selection in soybean.

  • PDF

Development and Molecular Characterization of Novel Polymorphic Genomic DNA SSR Markers in Lentinula edodes

  • Moon, Suyun;Lee, Hwa-Yong;Shim, Donghwan;Kim, Myungkil;Ka, Kang-Hyeon;Ryoo, Rhim;Ko, Han-Gyu;Koo, Chang-Duck;Chung, Jong-Wook;Ryu, Hojin
    • Mycobiology
    • /
    • v.45 no.2
    • /
    • pp.105-109
    • /
    • 2017
  • Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.

Evaluation of Bacterial Blight Resistance Using SNP and STS Marker-assisted Selection in Aromatic Rice Germplasm

  • Kim, Jeong-Soon;Gwang, Jae-Gyun;Park, Ki-Hun;Shim, Chang-Ki
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.408-416
    • /
    • 2009
  • A molecular survey was conducted to identify the presence of the bacterial blight resistance genes (Xa1, Xa4, xa5, xa13 and Xa21) in 86 accessions of aromatic rice obtained from germplasm. The results revealed that the resistance gene Xa4 (32.5%), Xa21 (17%), and xa5 (16%) were widely observed in tested rice germplasm. Among tested rice germplasm, 49 accessions showed the presence of more than one of five R genes, and 37 accessions possessed none of the R gene. TALLi and 05-IRRi-M-46 showed the presence of Xa4, xa5, xa13 and Xa21. Rice race $415{\times}Ir352$ exhibited positive amplicon for the Xa1, Xa4, xa5 and Xa21. Hyangmibyeo1hos, Ir841-85-1-1-2 and Jasmine85 showed the positive amplicon for the Xa1, Xa4 and xa5 genes. Yekywin Yinkya Hmwe and Khao Dawk Mali105 showed the presence of Xa1, Xa4 and Xa21 gene. Masino Basmati showed the presence of xa5, xa13, Xa21 genes. Xa1 and Xa21 genes were noticed in Mihayngbyeo, Tarana Deshi, Mayataung and AZUCENA. Hyangmibyeo2ho, Basmati 6311 and Basmati405 possessed only two R genes such as Xa4 and xa5, and xa5 and xa13, respectively. The evaluation results of bacterial blight resistance genes in aromatic rice germplasm will help in breeding of multi disease resistant varieties.

Polymorphism of Insulin-like Growth Factor Binding Protein-4 Gene in 17 Pig Breeds and Its Relationship with Growth Traits

  • Wang, Wenjun;Hu, Xiaoxiang;Fei, Jin;Meng, Qinyong;Li, Ning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1490-1495
    • /
    • 2007
  • Insulin-like growth factor binding protein-4 (IGFBP-4) is a member of the IGF super family, and regulates the action of IGFs. The polymorphism of porcine IGFBP-4 gene in 17 pig breeds (total n = 570) was detected by PCR-SSCP, and alleles A and B were detected. In these pig breeds, it was found that exotic pig breeds carried high frequencies of allele A, while Chinese native pig breeds carried high frequencies of allele B. The role of porcine IGFBP-4 was investigated in 172 F2 offspring of a $Lantang{\times}Lantang $ population. Forty eight growth traits were recorded for analyzing the association between IGFBP-4 gene polymorphism and quantitative performance traits. In this resource family, pigs with AA genotype had higher fore-body weight, bone weight of mid-body, bone weight of rear-body, fore-leg weight and rear-leg weight than those pigs with BB genotype (p<0.05); while pigs which carried BB genotype had higher back-fat thickness at C point and lard weight than those pigs with AA genotype (p<0.05); pigs with AA genotype had higher body weight than those with BB genotype; for meat quality traits, pigs with AA genotype had higher meat color than those of BB genotype (p<0.01), and pigs with BB genotype had higher marbling than those of AA and AB genotypes (p<0.01 and p<0.05, respectively).Based on these results, it is necessary to do more studies on IGFBP-4 before using the IGFBP-4 locus for the application of marker-assisted selection programs.

Detection of Mendelian and Parent-of-origin Quantitative Trait Loci in a Cross between Korean Native Pig and Landrace I. Growth and Body Composition Traits

  • Kim, E.H.;Choi, B.H.;Kim, K.S.;Lee, C.K.;Cho, B.W.;Kim, T.-H.;Kim, J.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.669-676
    • /
    • 2007
  • This study was conducted to detect quantitative trait loci (QTL) affecting growth and body composition in an $F_2$ reference population of Korean native pig and Landrace crossbreds. The three-generation mapping population was generated with 411 progeny from 38 $F_2$ full-sib families, and 133 genetic markers were used to produce a sex-average map of the 18 autosomes. The data set was analyzed using least squares Mendelian and parent-of-origin interval-mapping models. Lack-of-fit tests between the models were used to characterize QTL for mode of expressions. A total of 8 (39) QTL were detected at the 5% genome (chromosome)-wise level for the 17 analyzed traits. Of the 47 QTL detected, 21 QTL were classified as Mendelian expressed, 13 QTL as paternally expressed, 6 QTL as maternally expressed, and 7 QTL as partially expressed. Of the detected QTL at 5% genome-wise level, two QTL had Mendelian mode of inheritance on SSC6 and SSC9 for backfat thickness and bone weight, respectively, two QTL were maternally expressed for leather weight and front leg weight on SSC6 and SSC12, respectively, one QTL was paternally expressed for birth weight on SSC4, and three QTL were partially expressed for hot carcass weight and rear leg weight on SSC6, and bone weight on SSC13. Many of the Mendelian QTL had a dominant (complete or overdominant) mode of gene action, and only a few of the QTL were primarily additive, which reflects that heterosis for growth is appreciable in a cross between Korean native pig and Landrace. Our results indicate that alternate breed alleles of growth and body composition QTL are segregating between the two breeds, which could be utilized for genetic improvement of growth via marker-assisted selection.

Screening of Rice Germplasm for the Distribution of Rice Blast Resistance Genes and Identification of Resistant Sources

  • Ali, Asjad;Hyun, Do-Yoon;Choi, Yu-Mi;Lee, Sukyeung;Oh, Sejong;Park, Hong-Jae;Lee, Myung-Chul
    • Korean Journal of Plant Resources
    • /
    • v.29 no.6
    • /
    • pp.658-669
    • /
    • 2016
  • Rice blast, caused by a fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. Analyzing the valuable genetic resources is important in making progress towards blast resistance. Molecular screening of major rice blast resistance (R) genes was determined in 2,509 accessions of rice germplasm from different geographic regions of Asia and Europe using PCR based markers which showed linkage to twelve major blast R genes, Pik-p, Pi39, Pit, Pik-m, Pi-d(t)2, Pii, Pib, Pik, Pita, Pita/Pita-2, Pi5, and Piz-t. Out of 2,509 accessions, only two accessions had maximum nine blast resistance genes followed by eighteen accessions each with eight R genes. The polygenic combination of three genes was possessed by maximum number of accessions (824), while among others 48 accessions possessed seven genes, 119 accessions had six genes, 267 accessions had five genes, 487 accessions had four genes, 646 accessions had two genes, and 98 accessions had single R gene. The Pik-p gene appeared to be omnipresent and was detected in all germplasm. Furthermore, principal component analysis (PCA) indicated that Pita, Pita/Pita-2, Pi-d(t)2, Pib and Pit were the major genes responsible for resistance in the germplasm. The present investigation revealed that a set of 68 elite germplasm accessions would have a competitive edge over the current resistance donors being utilized in the breeding programs. Overall, these results might be useful to identify and incorporate the resistance genes from germplasm into elite cultivars through marker assisted selection in rice breeding.

Morphological Characteristics and Genetic Diversity Analysis of Platycodon grandiflorum (Jacq.) A. DC Determined Using SSR Markers (도라지 수집종의 형태적 특성과 SSR마커에 의한 유연관계 분석)

  • Um, Yurry;Lee, Yi;Jin, Mei-Lan;Lee, Dae Young;Lee, Jae Won;Kim, Geum Soog;Kim, Chang Kug;Hong, Chang Pyo;Kim, Ok Tae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Background : Plant breeding requires the collection of genetically diverse genetic resources. Studies on the characteristics of Platycodon grandiflorum resources have not been carried out so far. The present study was carried out to discriminate P. grandiflorum based on morphological characteristics and genetic diversity using simple sequence repeat (SSR) markers. Methods and Results :We collected 11 P. grandiflorum cultivars: Maries II, Hakone double white, Hakone double blue, Fuji white, Fuji pink, Fuji blue, Astra white, Astra pink, Astra blue, Astra semi-double blue and Jangbaek. Analyses of the morphological characteristics of the collection were conducted for aerial parts (flower, stem and leaf) and underground parts (root). Next, the genetic diversity of all P. grandiflorum resources was analyzed using SSR markers employing the DNA fragment analysis method. We determined that the 11 P. grandiflorum cultivars analyzed could be classified by plant length, leaf number and root characteristic. Based on the genetic diversity analysis, these cultivars were classified into four distinct groups. Conclusions : These findings could be used for further research on cultivar development using molecular breeding techniques and for conservation of the genetic diversity of P. grandiflorum. Moreover, the markers could be used for genetic mapping of the plant and marker-assisted selection for crop breeding.