• Title/Summary/Keyword: marine cyanobacteria

Search Result 42, Processing Time 0.022 seconds

Biotechnological Potential of Marine Cyanobacteria in Wastewater Treatment: Disinfection of Raw Sewage by Oscillatoria willei BDU130511

  • Uma, L.;Selvaraj, K.;Manjula, R.;Subramanian, G.;Nagarkar, Sanjay
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.699-701
    • /
    • 2002
  • The current study demonstrates the ability of the marine cyanobacterium Oscillatoria willei BDU130511 to disinfect raw sewage. Within a holding time of 3 h under laboratory conditions, the organism drastically reduced in the total bacterial and coliform counts at various pH levels, in both unbuffered and buffered sewage, thereby suggesting a potential role for cyanobacteria in wastewater treatment.

Molecular Characterization of Marine Cyanobacteria from the Indian Subcontinent Deduced from Sequence Analysis of the Phycocyanin Operon (cpcB-IGS-cpcA) and 16S-23S ITS Region

  • Premanandh, Jagadeesan;Priya, Balakrishnan;Teneva, Ivanka;Dzhambazov, Balik;Prabaharan, Dharmar;Uma, Lakshmanan
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.607-616
    • /
    • 2006
  • Molecular characterization of ten marine cyanobacterial isolates belonging to the order Oscillatoriales was carried out using the phycocyanin locus (cpcBA-IGS) and the 16S-23S internally transcribed spacer region. DNA sequences from the phycocyanin operon discriminated ten genotypes, which corresponded to seven morphotypes identified by traditional microscopic analysis. The cpcB coding region revealed 17% nucleotide variation, while cpcA exhibited 29% variation across the studied species. Phylogenetic analyses support the conclusion that the Phormidium and Leptolyngbya genera are not monophyletic. The nucleotide variations were heterogeneously distributed with no or minimal informative nucleotides. Our results suggest that the discriminatory power of the phycocyanin region varies across the cyanobacterial species and strains. The DNA sequence analysis of the 16S-23S internally transcribed spacer region also supports the polyphyletic nature of the studied oscillatorian cyanobacteria. This study demonstrated that morphologically very similar strains might differ genotypically. Thus, molecular approaches comprising different gene regions in combination with morphological criteria may provide better taxonomical resolution of the order Oscillatoriales.

Optimization of Mass cultivation Media for the Production of Biomass and Natural Colourants from Two Marine Cyanobacteria by a Mathematical Design of Experiments

  • Sekar, S.;Priya, S.Sri Lavanya;Roy, P.Wesley
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.157-163
    • /
    • 2000
  • Optimization of chemicals in the large scale sea water medium and inoculum for biomass and natural colourants production in the marine cyanobacteria, Phomidium tenue BDU 46241 (phycoerythrin producer) and P.valderianum BDU 30501 (phycocyanin producer) was carried out by experiments in L8 orthogonal array. Mathematical analysis revealed the significance of these factors. The factor(s) that critically control the yield varied with the organism and the end-product further, the desirable level of these factors between the normal and a higher level tested was identified and improved media were evolved. In both cyanobacteria, higher level of $K_2$$HPO_4$, $NaNO_3$ and inoculum with normal level of ferric ammonium citrate was found to be desirable for biomass production and additionally, higher level of $MgSO_4$ for pigment production. The level of other factors varied with the organism and the end-product. Confirmation experiments showed that the clues obtained based on mathematical experimentation are valid. In P.tenue, the medium optimized for biomass production increased the yield of biomass by 495% and the medium optimized for phycoerythrin production increased the yield of biomass by 408% with 30% increase in phycoerythrin content of the biomass. Similarly in P.valderianum, the medium optimized for biomass production increased the yield of biomass by 224% and the medium optimized for phycocyanin production increased the yield of biomass by 143% with 44% increase in phycocyanin content of the biomass.

  • PDF

Evidence on the Presence of $tRNA^{fMet}$ Group I Intron in the Marine Cyanobacterium Synechococcus elongatus

  • Muralitharan, Gangatharan;Thajuddin, Nooruddin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • Self-splicing group I introns in tRNA anticodon loops have been found in diverse groups of bacteria. In this work, we identified $tRNA^{fMet}$ group I introns in six strains of marine Synechococcus elongatus. Introns with sizes around 280 bp were consistently obtained in all the strains tested. In a phylogenetic analysis using the nucleotide sequence determined in this study with other cyanobacterial $tRNA^{fMet}$ and $tRNA^{Leu}$ intron sequences, the Synechococcus sequence was grouped together with the sequences from other unicellular cyanobacterial strains. Interestingly, the phylogenetic tree inferred from the intronic sequences clearly separates the different tRNA introns, suggesting that each family has its own evolutionary history.

Current Status of Photobiological Hydrogen Production Technology Using Unicellular Marine Cyanobacterial Strains (단세포성 해양남세균 종주를 이용한 광생물학적 수소생산 기술)

  • Park, Jong-Woo;Kim, Jae-Man;Yih, Won-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.63-68
    • /
    • 2009
  • Among various microscopic organisms producing photobiological hydrogen, cyanobacteria have long been recognized as the promising biological agents for hydrogen economy in 21 century. For photobiological production of hydrogen energy, marine unicellular $N_2$-fixing cyanobacteria have been evaluated as an ideal subgroup of Cyanophyceae. To develope the hydrogen production technology using unicellular $N_2$-fixing cyanobacteria, 3 important factors are pre-requisite: 1) isolation of the best strain from marine natural environment, 2) exploration on the strain-specific optimal conditions for the photobiological hydrogen production, and finally 3) application of the molecular genetic tools to improve the natural ability of the strain to produce hydrogen. Here we reviewed the recent research & development to commercialize photobiological hydrogen production technology, and suggest that intensive R&D during next 10-15 years should be imperative for the future Korean initiatives in the field of the photobiological hydrogen production technology using photosynthetic marine unicellular cyanobacterial strains.

Bacterial Community Diversity Associated with Two Marine Sponges from the South Pacific Ocean based on 16S rDNA-DGGE analysis (남태평양에 서식하는 두 종의 해면 Hyrtios sp.와 Callyspongia sp.의 공생세균 군집의 다양성)

  • Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.255-261
    • /
    • 2010
  • The bacterial community structure associated with two marine sponges, Hyrtios sp. 604 and Callyspongia sp. 612 collected from the South Pacific Ocean were analyzed by 16S rDNA-denaturing gradient gel electrophoresis (DGGE). The phylogenetic analysis showed that the bacterial community associated with Hyrtios sp. 604 contained diverse bacterial groups such as Chloroflexi, Firmicutes, Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Acidobacteria. Callyspongia sp. 612 harbored Chloroflexi, Cyanobacteria, Alphaproteobacteria, and Gammaproteobacteria. Hyrtios sp. 604 belonging to genus Hyrtios known to produce natural products showed greater bacterial diversity than Callyspongia sp. 612. Phylum Actinobacteria was shown to be one of dominant bacterial groups in Hyrtios sp. 604. Although the same phyla of bacteria were found in both sponge species, the spongeassociated predominant bacterial groups differed between the two sponges with different chemical characteristics from the same geographical location. Uncultured bacteria represented over 90% of the bacteria diversity present in all bacterial communities of the sponges.

Bioactive Compounds Derived from Marine Bacteria: Anti-cancer Activity

  • Kim, Se-Kwon;Hoang, Van L.T.;Kim, Moon-Moo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.232-242
    • /
    • 2006
  • Bioactive compounds produced by microorganisms have focused on in recent years. In particular, novel compounds showing anti-cancer activity have been isolated from marine microorganisms. In this review, we will discuss on the studies of new bioactive compounds derived from marine bacteria with conjunction to anti-cancer activity. This review will provide an information and source for bioactive compounds showing anti-cancer activity, which were derived from marine bacteria.

  • PDF

Discovery of novel Nodosilinea species (Cyanobacteria, Nodosilineales) isolated from terrestrial habitat in Ryukyus campus, Okinawa, Japan

  • Handung Nuryadi;Shimpei Sumimoto;Shoichiro Suda
    • ALGAE
    • /
    • v.39 no.2
    • /
    • pp.59-74
    • /
    • 2024
  • Terrestrial cyanobacteria are extremely diverse. In urban areas, they can be found as black stains on the surface of building walls, stone monuments, or man-made structures. Many of the terrestrial cyanobacteria are still understudied. To expand knowledge of terrestrial cyanobacterial diversity, a polyphasic characterization was performed to identify 12 strains isolated from campus of University of the Ryukyus, Okinawa, Japan. Multigene phylogenetic analyses based on 16S rRNA gene and 16S-23S rRNA internal transcribed spacer (ITS) region showed that the isolated strains formed two independent subclades within Nodosilinea, and were distantly related to all described Nodosilinea species. The 16S-23S rRNA ITS secondary structures showed variations for D1-D1' and Box B domain, while V3 domain was almost identical among entire species of Nodosilinea, including the studied strains. In addition, a unique morphological character, i.e. forming nodule or spiral shape, was also observed in certain studied strains. According to polyphasic characterization, Nodosilinea coculeatus sp. nov. and Nodosilinea terrestrialis sp. nov., were proposed as two new species of terrestrial cyanobacteria from Okinawa.

Biofilm Formation and Indole-3-Acetic Acid Production by Two Rhizospheric Unicellular Cyanobacteria

  • Ahmed, Mehboob;Stal, Lucas J.;Hasnain, Shahida
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1015-1025
    • /
    • 2014
  • Microorganisms that live in the rhizosphere play a pivotal role in the functioning and maintenance of soil ecosystems. The study of rhizospheric cyanobacteria has been hampered by the difficulty to culture and maintain them in the laboratory. The present work investigated the production of the plant hormone indole-3-acetic acid (IAA) and the potential of biofilm formation on the rhizoplane of pea plants by two cyanobacterial strains, isolated from rice rhizosphere. The unicellular cyanobacteria Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 that were isolated from a rice rhizosphere, were investigated. Production of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 was measured under experimental conditions (pH and light). The bioactivity of the cyanobacterial auxin was demonstrated through the alteration of the rooting pattern of Pisum sativum seedlings. The increase in the concentration of L-tryptophan and the time that this amino acid was present in the medium resulted in a significant enhancement of the synthesis of IAA (r > 0.900 at p = 0.01). There was also a significant correlation between the concentration of IAA in the supernatant of the cyanobacteria cultures and the root length and number of the pea seedlings. Observations made by confocal laser scanning microscopy revealed the presence of cyanobacteria on the surface of the roots and also provided evidence for the penetration of the cyanobacteria in the endorhizosphere. We show that the synthesis of IAA by Chroococcidiopsis sp. MMG-5 and Synechocystis sp. MMG-8 occurs under different environmental conditions and that the auxin is important for the development of the seedling roots and for establishing an intimate symbiosis between cyanobacteria and host plants.

Optimal Temperature for H2 Production and Population Growth of the N2-fixing Unicellular Cyanobacterial Strains from Korean Coasts (한국 연안산 질소고정 단세포 남세균 종주의 최적 성장 및 수소생산 온도)

  • Park, Jongwoo;Kim, Hyungseop;Yih, Wonho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Photobiological hydrogen production by nitrogen-fixing unicellular cyanobacteria has long been considered to be an environmentally sound and very promising method for the future supply of renewable clean energy. Using six Korean nitrogen-fixing unicellular cyanobacterial strains and the Synechococcus sp. strain Miami BG043511 we performed cultivation experiments to find out the strain-specific optimal temperature for population growth and $H_2$ production. Under $20^{\circ}C$ the population growth of all the tested strains was significantly retarded in contrasts to the faster and higher growth under 25, 30 or $35^{\circ}C$. The highest growth rates in all the 7 strains were measured under $30^{\circ}C$ while the maximal biomass yields were under $30^{\circ}C$ (strains CB-MAL 026, 054, and 055) or $35^{\circ}C$ (strains 002, 031, 058, and Miami BG043511). The difference between the maximal biomass yields at $30^{\circ}C$ and $35^{\circ}C$ was not greater than 10%. The quantity of photobiologically produced $H_2$ was only slight larger under $35^{\circ}C$ than that under $20^{\circ}C$. Our result may suggest a two-step process of $H_2$ production which includes rapid and sizable production of biomass at $30^{\circ}C$ and the following high $H_2$ production at $20^{\circ}C$ by the test strains of marine nitrogen-fixing unicellular cyanobacteria.