Molecular Characterization of Marine Cyanobacteria from the Indian Subcontinent Deduced from Sequence Analysis of the Phycocyanin Operon (cpcB-IGS-cpcA) and 16S-23S ITS Region

  • Premanandh, Jagadeesan (National Facility for Marine Cyanobacteria, Bharathidasan University) ;
  • Priya, Balakrishnan (National Facility for Marine Cyanobacteria, Bharathidasan University) ;
  • Teneva, Ivanka (Department of Botany, Faculty of Biology, University of Plovdiv) ;
  • Dzhambazov, Balik (Department of Cell and Molecular Biology, Lund University) ;
  • Prabaharan, Dharmar (National Facility for Marine Cyanobacteria, Bharathidasan University) ;
  • Uma, Lakshmanan (National Facility for Marine Cyanobacteria, Bharathidasan University)
  • Published : 2006.12.31

Abstract

Molecular characterization of ten marine cyanobacterial isolates belonging to the order Oscillatoriales was carried out using the phycocyanin locus (cpcBA-IGS) and the 16S-23S internally transcribed spacer region. DNA sequences from the phycocyanin operon discriminated ten genotypes, which corresponded to seven morphotypes identified by traditional microscopic analysis. The cpcB coding region revealed 17% nucleotide variation, while cpcA exhibited 29% variation across the studied species. Phylogenetic analyses support the conclusion that the Phormidium and Leptolyngbya genera are not monophyletic. The nucleotide variations were heterogeneously distributed with no or minimal informative nucleotides. Our results suggest that the discriminatory power of the phycocyanin region varies across the cyanobacterial species and strains. The DNA sequence analysis of the 16S-23S internally transcribed spacer region also supports the polyphyletic nature of the studied oscillatorian cyanobacteria. This study demonstrated that morphologically very similar strains might differ genotypically. Thus, molecular approaches comprising different gene regions in combination with morphological criteria may provide better taxonomical resolution of the order Oscillatoriales.

Keywords

References

  1. Anagnostidis, K. and J. Komarek. 1985. Modern approach to the classification system of cyanophytes 1-Introduction. Arch. Hydrobiol./ Suppl. 71, Algological. Studies 38 / 39, 291-302
  2. Ballot, A., P. Dadheech, and L. Krienitz. 2004. Phylogenetic relationship of Arthrospira, Phormidium, and Spirulina strains from Kenyan and Indian waterbodies. Arch. Hydrobiol. Suppl./Algological Studies 113, 37-56
  3. Barker, G.L., P.K. Hayes, and S.L. O'Mahony. 1999. A molecular and phenotypic analysis of Nodularia (Cyanobacteria) from the Baltic Sea. J. Phycol. 35, 931-937 https://doi.org/10.1046/j.1529-8817.1999.3550931.x
  4. Barker, G.L., B.A. Handley, P. Vacharapiyasophon, J.R. Stevens, and P.K. Hayes. 2000a. Allele-specific PCR shows that genetic exchange occurs among genetically diverse Nodularia (Cyanobacteria) filaments in the Baltic Sea. Microbiology 146, 2865-2875 https://doi.org/10.1099/00221287-146-11-2865
  5. Barker, G.L., A. Konopka, B.A. Handley, and P.K. Hayes. 2000b. Genetic variation in Aphanizomenon (Cyanobacteria) colonies from the Baltic Sea and North America. J. Phycol. 36, 947-950 https://doi.org/10.1046/j.1529-8817.2000.99146.x
  6. Baurain, D., L. Renquin, S. Grubisic, P. Scheldeman, A. Belay, and A. Wilmotte. 2002. Remarkable conservation of internally transcribed spacer sequences of Arthrospira ('Spirulina') (Cyanophyceae, Cyanobacteria) strains from four continents and of recent and 30-years-old dried samples from Africa. J. Phycol. 38, 384-393 https://doi.org/10.1046/j.1529-8817.2002.01010.x
  7. Bolch, C.J.S., S.I. Blackburn, B.A. Neilan, and P.M. Grewe. 1996. Genetic characterization of strains of cyanobacteria using PCR-RFLP of the phycocyanin intergenic spacer and flanking regions. J. Phycol. 32, 445-451 https://doi.org/10.1111/j.0022-3646.1996.00445.x
  8. Boyer, S.L., V.R. Flechtner, and J.R. Johansen. 2001. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol. Biol. Evol. 18, 1057-1069 https://doi.org/10.1093/oxfordjournals.molbev.a003877
  9. Castenholz, R.W. and J.B. Waterbury. 1989. Cyanobacteria. In Stanley, J.T., M.P. Bryant, N. Pfenning, and J.H. Holt (Eds.). Bergy's Manual Systematic Bacteriology, Vol. 3. Section 19: Oxygenic photosynthetic bacteria. Williams and Wilkins, Baltimore, USA
  10. Crosbie, N.D., M. Pöckl, and T. Weisse. 2003. Dispersal and phylogenetic diversity of nonmarine Picocyanobacteria, inferred from 16S rRNA gene and cpcBA-Intergenic spacer sequence analyses. Appl. Environ. Microbiol. 69, 5716-5721 https://doi.org/10.1128/AEM.69.9.5716-5721.2003
  11. Dyble, J. H.W. Paerl, and B.A. Neilan. 2002. Genetic characterization of Cylindrospermopsis raciborskii (Cyanobacteria) isolates from diverse geographic origins based on nifH and cpcBA-IGS nucleotide sequence analysis. Appl. Environ. Microbiol. 68, 2567-2571 https://doi.org/10.1128/AEM.68.5.2567-2571.2002
  12. Felsenstein, J. 2004. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA
  13. Fox, G.E., J.D. Wisotzkey, and P. Jurtshuk, Jr. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42, 166-170 https://doi.org/10.1099/00207713-42-1-166
  14. Garcia-Pichel, F., L. Prufert-Bebout, and G. Muyzer. 1996. Phenotypic and phylogenetic analysis show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl. Environ. Microbiol., 62, 3284-3291
  15. Ishida, T., A. Yokota, and J. Sugiyama. 1997. Phylogenetic relationships of filamentous cyanobacterial taxa inferred from 16S rDNA sequence divergence. J. Gen. Appl. Microbiol. 43, 237-241 https://doi.org/10.2323/jgam.43.237
  16. Iteman, I., R. Rippka, N. Tandeau De Marsac, and M. Herdman. 2000. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiol. 146, 1275-1286 https://doi.org/10.1099/00221287-146-6-1275
  17. Janson, S. and E. Granéli. 2002. Phylogenetic analyses of nitrogen-fixing cyanobacteria from the Baltic Sea reveal sequence anomalies in the phycocyanin operon. Int. J. System. Evol. Microbiol. 52, 1397-1404 https://doi.org/10.1099/ijs.0.02111-0
  18. Komárek, J. and K. Anagnostidis. 1989. Modern approach to the classification system of cyanophytes. 4: Nostocales. Arch. Hydrobiol. Suppl./Algological Studies 56, 247-345
  19. Komarek, J. and K. Anagnostidis. 2005. Susswasserflora von Mitteleuropa Bd.19/2 Cyanoprokaryota, Oscillatoriales, Verlag: Spektrum Akademischer Verlag; Urban and Fischer Bei Els, 759 p
  20. Li, X. 2000. Phenotypic and genotypic characterization of Nostoc species from 6 different sites in the Mojave desert. Master's thesis, John Carroll University, Cleveland, Ohio
  21. Litvaitis, M.K. 2002. A molecular test of cyanobacterial phylogeny: inferences from constraint analyses. Hydrobiologia 468, 135-145 https://doi.org/10.1023/A:1015262621848
  22. Lu, W. 1999. Application of molecular biological techniques to the identification of cyanobacteria. Master's thesis, Liverpool John Moores University, England
  23. Lu, W., E.H. Evans, S.M. McColl, and V.A. Saunders. 1997. Identification of cyanobacteria by polymorphisims of PCRamplified ribosomal DNA spacer regions. FEMS Microbiol. Lett. 153, 147-149
  24. Manen, J.F. and J. Falque. 2002. The cpcB-cpcA locus as a tool for the genetic characterization of the genus Arthrospira (Cyanobacteria): evidence for horizontal transfer. Int. J. System. Evol. Microbiol. 52, 861-867 https://doi.org/10.1099/ijs.0.01981-0
  25. Margheri, M.C., R. Piccardi, S. Ventura, C. Viti, and L. Giovannetti. 2003. Genotypic diversity of oscillatoriacean strains belonging to the genera Geitlerinema and Spirulina determined by 16S rDNA restriction analysis. Curr. Microbiol. 46, 359-364 https://doi.org/10.1007/s00284-002-3869-4
  26. Neilan, B.A., D. Jacobs, and A.E. Goodman. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61, 3875-3883
  27. Nübel, U., F. Garcia-Pichel, and G. Muyzer. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327-3332
  28. Orcutt, K.M., U. Rasmussen, E.A. Webb, J.B. Waterbury, K. Gundersen, and B. Bergman. 2002. Characterization of Trichodesmium spp. by genetic techniques. Appl. Environ. Microbiol. 68, 2236-2245 https://doi.org/10.1128/AEM.68.5.2236-2245.2002
  29. Otsuka, S., S. Suda, R. Li, S. Matsumoto, and M. Watanabe. 2000. Morphological variability of colonies of Microcystis morphospecies in culture. J. Gen. Appl. Microbiol. 46, 39-50 https://doi.org/10.2323/jgam.46.39
  30. Payne, M.C., J.R. Johansen, and S.L. Boyer. 2001. Taxonomic resolution of Leptolyngbya (Cyanophyta) utilizing the 16S rRNA gene sequence. 55th Annual Meeting of the Phycological Society of America, June 23-28, 2001, Estes Park, CO, USA; J. Phycol. 37, 40
  31. Prabaharan, D. 1988. Partial characterization of the marine cyanobacterium Phormidium valderianum 30501 for biotechnological purposes. M. Phil Dissertation, Bharathidasan University, Tiruchirapalli, India
  32. Rippka, R., J. Deruelles, J.B. Waterbury, M. Herdman, and R.Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61 https://doi.org/10.1099/00221287-111-1-1
  33. Robertson, B.R., N. Tezuka, and M.M. Watanabe. 2001. Phylogenetic analyses of Synechococcus strains (Cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. 51, 861-871 https://doi.org/10.1099/00207713-51-3-861
  34. Saker, M.L., B.A. Neilan, and D.J. Griffiths. 1999. Two morphological forms of Cylindrospermopsis raciborskii (Cyanobacteria) isolated from Solomon Dam, Palm Island, Queensland. J. Phycol. 35, 599-606 https://doi.org/10.1046/j.1529-8817.1999.3530599.x
  35. Salomon, P.S., S. Janson, and E. Granéli. 2003. Molecular identification of bacteria associated with filaments of Nodularia spumigena and their effect on the cyanobacterial growth. Harmful. Algae 2, 261-272 https://doi.org/10.1016/S1568-9883(03)00045-3
  36. Scheldeman, P., D. Baurain, R. Bouhy, M. Scott, M. Mühling, B.A. Whitton, A. Belay, and A. Wilmotte. 1999. Arthrospira ('Spirulina') strains from four continents are resolved in only two clusters, based on amplified ribosomal DNA restriction analysis on the internally transcribed spacer. FEMS Microbiol. Lett. 172, 213-222 https://doi.org/10.1111/j.1574-6968.1999.tb13471.x
  37. Stanier, R.Y., R. Kunisawa, M. Mandel, and G. Cohen-Bazire. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171-205
  38. Taton, A., S. Grubusic, E. Brambilla, R.D. Wit, and A. Wilmotte. 2003. Cyanobacterial diversity in natural and artificial microbial mats of lake fryxell (Mc Murdo dry valleys, Antartica): a morphological and molecular approach. Appl. Environ. Microbiol. 69, 5157-5169 https://doi.org/10.1128/AEM.69.9.5157-5169.2003
  39. Teneva, I., B. Dzhambazov, R. Mladenov, and K. Schirmer. 2005. Molecular and phylogenetic characterization of Phormidium species (Cyanoprokaryota) using the cpcBGS- cpcA locus. J. Phycol. 41, 188-194 https://doi.org/10.1111/j.1529-8817.2005.04054.x
  40. Tillett, D., D.L. Parker, and B.A. Neilan. 2001. Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl. Environ. Microbiol. 67, 2810-2818 https://doi.org/10.1128/AEM.67.6.2810-2818.2001
  41. Wu, X., A. Zarka, and S. Boussiba. 2000. A simplified protocol for preparing DNA from filamentous cyanobacteria. Plant. Mol. Biol. Rep. 18, 385-392 https://doi.org/10.1007/BF02825067
  42. Young, J.M., 2001. Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy. Int. J. System. Evol. Microbiol. 51, 945-953 https://doi.org/10.1099/00207713-51-3-945