Browse > Article
http://dx.doi.org/10.7850/jkso.2009.14.1.063

Current Status of Photobiological Hydrogen Production Technology Using Unicellular Marine Cyanobacterial Strains  

Park, Jong-Woo (Department of Oceanography, Kunsan National University)
Kim, Jae-Man (Department of Oceanography, Kunsan National University)
Yih, Won-Ho (Department of Oceanography, Kunsan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.14, no.1, 2009 , pp. 63-68 More about this Journal
Abstract
Among various microscopic organisms producing photobiological hydrogen, cyanobacteria have long been recognized as the promising biological agents for hydrogen economy in 21 century. For photobiological production of hydrogen energy, marine unicellular $N_2$-fixing cyanobacteria have been evaluated as an ideal subgroup of Cyanophyceae. To develope the hydrogen production technology using unicellular $N_2$-fixing cyanobacteria, 3 important factors are pre-requisite: 1) isolation of the best strain from marine natural environment, 2) exploration on the strain-specific optimal conditions for the photobiological hydrogen production, and finally 3) application of the molecular genetic tools to improve the natural ability of the strain to produce hydrogen. Here we reviewed the recent research & development to commercialize photobiological hydrogen production technology, and suggest that intensive R&D during next 10-15 years should be imperative for the future Korean initiatives in the field of the photobiological hydrogen production technology using photosynthetic marine unicellular cyanobacterial strains.
Keywords
Photobiological Hydrogen Production; Unicellular Marine Cyanobacteria; Strain Specificity; $N_2$-Fixation; Hydrogen Economy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 김재만, 2008. 한국 연안산 질소고정 남세균 종주들의 세포주기동조화와 광생물학적 수소생산능력. 군산대학교 대학원. 석사학위논문. 52 pp
2 윤순진, 2002. 지속가능한 발전과 21세기 에너지 정책 - 에너지 체제 변환 및 필요성과 에너지정책의 바람직한 전환방향. 한국 행정학보 36(3), 147−167
3 Asada Y., J. Miyake, 1999. Photobiological hydrogen production. Journal of Bioscience and Bioengineering, 88(1): 1−6   DOI   PUBMED   ScienceOn
4 Chen, M., R.G. Hiller, C.J. Howe, A.W.D. Larkum, 2005. Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll- d light-harvesting systems. Molecular Biology and Evolution, 22(1): 21-28   DOI   ScienceOn
5 Gao, K., K.R. Mckinley, 1994. Use of macroalgae for marine biomass production and $CO_2$ remediation: a review. J. Appl. Phycol., 6: 45−60   DOI
6 Hallenberck, P.C., J.R. Benemann, 2002. Biological hydrogen production; fundamentals and limiting process. International Journal of Hydrogen Energy, 27: 1185−1193   DOI   ScienceOn
7 Herzog, A., M. Tatsutani, 2005. A hydrogen future? An economic and environmental assessment of hydrogen production pathways. Natural Resources Defense Council, 23 pp
8 Iwazaki, H., T. Kondo, 2000. The current state and problems of cir-cadian clock studies in cyanobacteria. Plant and Cell Physiology, 41(9): 1013−1020   DOI   ScienceOn
9 Kumazawa, S., A. Mitsui, 1981. Characterization and optimization of hydrogen photoproduction by a saltwater blue-green alga, Oscillatoria sp. Miami BG7. I. Enhancement through limiting the supply of nitrogen nutrients. International Journal of Hydrogen Energy, 6: 339−348   DOI   ScienceOn
10 Mitsui, A., 1975. The utilization of solar energy for hydrogen production by cell free system of photosynthetic organisms. In: Hydrogen energy; Proceedings of the Hydrogen Economy Miami Energy Conference, Miami Beach, Fla., March 18-20, Part A. (A75-44751 22-44) New York, Plenum Press, pp. 309−316
11 Mitsui, A., 1976. Long range concepts; applications of photosynthetic hydrogen production and nitrogen fixation research. In: Proceedings of a conference on capturing the sun through bioconversion. March 10-12, Washington, D.C., pp. 653−673
12 Mitsui, A., R. Murray, B. Entenmann, K. Miyazawa, E. Polk, 1981. Utilization of marine blue-green algae and macroalgae in warm water mariculture. Environmental Science Research, 23: 215−225
13 Mitsui, A., S. Kumazawa, 1988. Nitrogen fixation by synchronously grown unicellular aerobic nitrogen-fixing cyanobacteria. In: Methods in enzymology, edited by Packer, L. and A.N. Glazer, Academic Press, 167: 484−490
14 Miyake, J., M. Miyake, Y. Asada, 1999. Biotechnological hydrogen production: research for efficient light energy conversion. Jounal of Biotechnology, 70: 89−101   DOI   ScienceOn
15 박종우, 2007. 한국 연안산 남세균 종주들의 광생물학적 수소생산 능력. 군산대학교 대학원. 석사학위논문. 53 pp
16 Schuts, K., T. Happe, O. Troshina, P. Lindblad, E. Leitao, P. Oliveira, P. Tamagnini, 2004. Cyanobacterial H2 production-a comparative analysis. Planta, 218: 350−359   DOI   PUBMED
17 Turner, S., T.C. Huang, S. Chaw, 2001. Molecular phylogeny of nitrogen-fixing unicellular cyanobacteria. Bot. Bull. Acad. Sin., 42: 181−186
18 Yoon, J.H., J.H. Shin, M.S. Kim, S.J. Sim, T.H. Park, 2006. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. International Journal of Hydrogen Energy, 31: 721−727   DOI   ScienceOn
19 Johnson, C.H., S.S. Golden, 1999. Circadian programs in cyanobacteria: Adaptiveness and mechanism. Amu. Rev. Microbiol., 53: 389−409   DOI   ScienceOn
20 Shah, V., N. Garg, D. Madamwar, 2001. Ulltrastructure of ther water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microbiology letters, 194: 71−75   DOI   PUBMED   ScienceOn
21 Mitsui, A., 1992. Hydrogen photoproduction by marine cyanobacteria for alternating the carbon energy sources. Short communications of the 1991 International Marine Biotechnology Conference, vol II, pp. 710−723
22 Levin, D.V., L. Pitt, M. Love, 2004. Biohyerogen production : prospects and limitations to practical application. International Journal of Hydrogen Energy, 29: 173−185   DOI   ScienceOn
23 Sakurai, H., H. Masukawa, X. Zhang, H. Ikeda, K. Inoue, 2008. Improvement of nitrogenase-based photobiological hydrogen production by cyanobacteria by gene engineering - hydrogenases and homocitrate synthase. In: Photosynthesis. Energy from the sun: 14th International Congress on Photosynthesis, editied by Allen, J.F., E. Gantt, J.H. Golbeck, and B. Osmond, Springer, pp. 1277-1280
24 Gallon, J.R., 1981. The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends in Biochemical Sciences, 6: 19−23   DOI   ScienceOn
25 Benemann, J.R., 2000. Hydrogen production by microalgae. Journal of Applied Phycology, 12: 291−300   DOI   ScienceOn
26 Park, J.W., J.M. Kim, N. Ha, W. Yih. 2007. Photobiological hydrogen production by Korean strains of unicellular nitrogen-fixing marine cyanobacteria. In: Proceedings of the 2007 Asian Biohydrogen Symposium. November 9-11, Daejeon, Korea. p.50
27 Wunschiers, R., P. Lindblad, 2002. Hydrogen in education - a biological approach. International Journal of Hydrogen Energy, 27: 1131−1140   DOI   ScienceOn
28 Ghirardi, M.L., L. Zhang, J.W. Lee, T. Flynn, M. Seibert, E. Greenbaum, A. Melis, 2000. Microalgae: a green source of renewable $H_2$. Trends in Biotechenology, 18(12): 506−511   DOI   ScienceOn
29 Lopez, M.S., D.M. Sherman, L.A. Sherman, 1997. Transcriptional and translational regulation of nitrogenase in light-dark- and continuous- light-grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. Journal of Bacteriology, 179(13): 4319−4327
30 김미선, 2005. 생물학적인 방법에 의한 수소생산. 수소에너지 정보 제 10호, 수소에너지 사업단. pp. 1−14
31 Greenbaum, E., S.L. Blankinship, J.W. Lee, R.M. Ford, 2001. Solar photobiochemistry: simultaneous photoproduction of hydrogen and oxygen in a confined bioreactor. J. Phys. Chem. B, 105: 3605−3609   DOI   ScienceOn
32 Homann, P.H., 2003. Hydrogen metabolism of green algae: discovery and early research - a tribute to Hans Gaffron and his coworkers. Photosynthesis Research, 76: 93−103   DOI   PUBMED
33 Logan., B.E., S.E. Oh, I.S. Kim, S.V. Ginkel, 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol., 36: 2530−2535   DOI   PUBMED   ScienceOn
34 Masukawa, H., M. Mochimaru, H. Sakurai, 2002. Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl. Microbiol. Biotechnol., 58: 618−624   DOI   PUBMED
35 Park, W., S.H. Hyun, S. Oh, B.E. Logan, I. Kim, 2005. Removal of headspace $CO_2$ increases biological hydrogen production. Environ. Sci. Technol., 39: 4416−4420   DOI   PUBMED   ScienceOn
36 Kumazawa, S., A. Mitsui, 1994. Efficient hydrogen photoproduction by synchronously grown cells of a marine cyanobacterium, Synechococcus sp. Miami BG 043511, under high cell density conditions. Biotechnology and Bioengineering, 44: 854−858   DOI   PUBMED   ScienceOn
37 Luo, Y.H., S. Kumazawa, LE, Brand, 1998. Effect of exogenous substrates on hydrogen photoproduction by a marine cyanobacterium, Synechococcus sp. Miami BG043511. In: Biohydrogen, edited by Zaborsky, Plenmum, pp. 219−226
38 Dutta, D., D. De, S. Chaudhuri, S.K. Bhattacharya, 2005. Hydrogen production by cyanobacteria. Microbial Cell Factories, 4: 36   DOI   ScienceOn
39 Gaffron, H., J. Rubin, 1942. Fermentative and photochemical production of hydrogen in algae. J Gen. Physiol., 26: 219−240   DOI   PUBMED
40 Leon, C., S. Kumazawa, A. Mitsui, 1986. Cyclic appearance of aerobic nitrogenasw activity during synchronous growth of unicellular cyanobacteria. Current microbiology, 13: 149−153   DOI   ScienceOn
41 Yih W, H. Takeyama, A. Mitsui, 1996. Hydrogen photoproduction by the synchronously growth marine unicellular cyanobacterium Synechoccoccus sp. Miami BG 043511 under extremely high oxygen concentration. J. Korean Soc. Oceanogr., 31(1): 18−22
42 Das, D., T.N. Veziroglu, 2001. Hydrogen production by biological process: a survey of literature. International Journal of Hydrogen Energy, 26: 13−28   DOI   ScienceOn
43 Kim, M.S., J.S. Baek, J.K. Lee, 2006. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant, International Journal of Hydrogen Energy, 31: 121−127   DOI   ScienceOn
44 Madamwar, D., N. Grag, V. Shah, 2000. Cyanobacterial hydrogen production. World Journal of Microbiology & Biotechnology, 16: 757−767   DOI
45 Mitsui, A., S Kumazawa, A. Takahashi, H. Ikemoto, S. Cao, T. Arai, 1986. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature, 323(6090): 720−722   DOI
46 Szacilowski, K., W. Macyk, A. Drzewiecka-Matuszek, M. Brindell, G. Stochel, 2005. Bioninorganic photochemistry: frontiers and mechanisms. Chem. Rev., 105: 2647−2694   DOI   PUBMED
47 Evans, B.R., H.M. O'Neill, S. A. Hutchens, B.D. Bruce, E. Greenbaum, 2004. Enhanced photocatalytic hydrogen evolution by covalent attachment of plastocyanin to photosystem I. Nano letters, 4(10): 1815−1819   DOI   ScienceOn
48 Almon, H., P. Boger, 1998. Hydrogen metabolism of the unicellular cyanobacterium Chroococcidiopsis thermalis ATCC29380. FEMS Microbiol Lett., 49: 445−449   DOI
49 Hansel, L.A., P. Lindblad, 1998. Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy soruce. Appl Microbial Biotechnol., 50: 153−160   DOI
50 Venjak-Novakovic, G., Y. Kim, X. Wu, I. Berzin, J.C. Merchuk, 2005. Air-lift bioreators for algae growth on flue gas: mathematical modeling and pilot-plant studies, Ind. Eng. Chem. Res., 44: 6154−6153   DOI   ScienceOn
51 Tamagnini, P., J. Coasta, L. Almeda, M. Oliveira, R. Salema, P. Lindblad, 2000. Diversity of cyanobacterial hydrogenases, a molecular approach. Current microbiology, 40: 356−361   DOI   PUBMED
52 Berberoglu, H., J. Jay, L. Pilon, 2008. Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC 29413. International Journal of Hydrogen Energy, 33: 1172−1184   DOI   ScienceOn
53 Kumazawa, S., 2003. Photoproduction of hydrogen by the marine heterocystous cyanobacterium Anabaena species TU37-1 under a nitrogen atmosphere. Mar. Biotechnology, 5: 222−226   DOI
54 Park, J.W., J.M. Kim, N. Ha, W. Yih. 2009. Synchronization of a cultured marine unicellular $N_2$-fixing cyanobacterium, Cyanothece sp. KNU CB-MAL031. The Yellow Sea (in press)
55 Chin, W.C., V.M. Orellana, I. Quesada, P. Verdugo, 2004. Secretion in unicellular Marine phytoplankton: demonstration of regulated exocytosis in Phaeocystis globosa. Plant Cell Physiol., 45(5): 535−542   DOI   PUBMED   ScienceOn
56 Winter, C.J., 2004. The hydrogen energy economy: an address to the world economic forum 2004. International Journal of Hydrogen Energy, 29: 1095−1097
57 Wyatt, J.T., J.K.G. Silvey, 1969. Nitrogen fixation by Gloeocapsa. Science, 165: 908−909   DOI   PUBMED   ScienceOn
58 박종우, 김재만, 박장호, 이원호. 2008. 국내 연안산 남세균 종주의 수소생산능 최적화: 1. 최적 수소생산을 위한 적정세포 농도. 2008년도 한국해양과학기술협의회 공동 학술대회 초록집(발표명, BP-23). 서귀포, 제주, p. 198
59 Borodin, V.B., K.K. Rao, D.O. Hall, 2002. Manifestation of behavioural and physiological functions of Synechococcus sp. Miami BG 043511 in a photobioreator. Marine Biology, 140: 455−463   DOI
60 Golden, S.S., M. Ishiura, C.H. Johnson, T. Kondo, 1997. Cyanobacterial circadian rhythms. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 327−354   DOI   PUBMED
61 Sode, K., K. Horikoshi, H. Takeyama, N. Nakamura, T. Matsunaga, 1991. On-line monitoring of marine cyanobacterial cultivation based on phycocyanin fluorescence. Journal of Biotechnology, 21: 209−218   DOI   ScienceOn
62 Lichtl, R.R., M.J. Bazin, D.O. Hall, 2005. The biotechnology of hydrogen production by Nostoc flagelliforme grown under chemostat conditions. Appl. Microbial. Biotechnol., 47: 701−707   DOI