Browse > Article

Evidence on the Presence of $tRNA^{fMet}$ Group I Intron in the Marine Cyanobacterium Synechococcus elongatus  

Muralitharan, Gangatharan (Department of Microbiology, National Faculty for Marine Cyanobacteria, Bharathidasan University)
Thajuddin, Nooruddin (Department of Microbiology, National Faculty for Marine Cyanobacteria, Bharathidasan University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.1, 2008 , pp. 23-27 More about this Journal
Abstract
Self-splicing group I introns in tRNA anticodon loops have been found in diverse groups of bacteria. In this work, we identified $tRNA^{fMet}$ group I introns in six strains of marine Synechococcus elongatus. Introns with sizes around 280 bp were consistently obtained in all the strains tested. In a phylogenetic analysis using the nucleotide sequence determined in this study with other cyanobacterial $tRNA^{fMet}$ and $tRNA^{Leu}$ intron sequences, the Synechococcus sequence was grouped together with the sequences from other unicellular cyanobacterial strains. Interestingly, the phylogenetic tree inferred from the intronic sequences clearly separates the different tRNA introns, suggesting that each family has its own evolutionary history.
Keywords
Group I intron; marine cyanobacteria; Synechococcus elongatus$tRNA^{fMet}$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Agrawal, M. K., S. K. Ghosh, D. Bagchi, J. Weckesser, M. Erhard, and S. N. Bagchi. 2006. Occurrence of microcystincontaining toxic water blooms in India. J. Microbiol. Biotechnol. 16: 212-218   과학기술학회마을
2 Biniszkiewicz, D., E. Cesnaviciene, and D. A. Shub. 1994. Selfsplicing group I intron in cyanobacterial initiator methionine tRNA: Evidence for lateral transfer of introns in bacteria. EMBO J. 13: 4629-4635
3 Carr, N. G. and N. H. Mann. 1994. The oceanic cyanobacterial picoplankton, pp. 27-48. In D. A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Boston
4 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120   DOI
5 Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163   DOI   ScienceOn
6 Neilan, B. A. 1995. Identification and phylogenetic analysis of toxigenic cyanobacteria by multiplex randomly amplified polymorphic DNA PCR. Appl. Environ. Microbiol. 61: 2286-2291
7 Ong, L. J. and A. N. Glazer. 1987. R-Phycocyanin II, a new phycocyanin occurring in marine Synechococcus species: Identification of the terminal energy acceptor bilin in phycocyanins. J. Biol. Chem. 262: 6323-6327
8 Reinhold-Hurek, B. and D. A. Shub. 1992. Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357: 173- 176   DOI   ScienceOn
9 Rudi, K. and K. S. Jakobson. 1999. Complex evolutionary patterns of $tRNA^{Leu}$ (UAA) group I introns in cyanobacterial radiation. J. Bacteriol. 181: 3445-3451
10 Rudi, K. and K. S. Jakobson. 1997. Cyanobacterial $tRNA^{Leu}$ (UAA) group I introns have polyphyletic origin. FEMS Microbiol. Lett. 156: 293-298   DOI   ScienceOn
11 Thajuddin, N. and G. Subramanian. 1992. Survey of cyanobacterial flora of the southern east coast of India. Botanica Marina 35: 305-311   DOI
12 Willey, J. M. and J. B. Waterbury. 1989. Chemotaxis toward nitrogenous compounds by swimming strains of marine Synechococcus spp. Appl. Environ. Microbiol. 55: 1888-1894
13 Waterbury, J. B., J. M. Willey, D. G. Franks, F. W. Valois, and S. W. Watson. 1985. A cyanobacterium capable of swimming motility. Science 230: 71-120   DOI
14 Kana, T. M. and P. M. Glibert. 1987. Effect of irradiances up to 2,000 mE $m^{-2}s^{-1}$ on marine Synechococcus WH7803. II. Photosynthetic responses and mechanisms. Deep Sea Res. 34: 497-516   DOI   ScienceOn
15 Kuhsel, M. G., R. Strickland, and J. D. Palmer. 1990. An ancient group I intron shared by eubacteria and chloroplasts. Science 250: 1570-1573   DOI
16 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
17 Koksharova, O. A. and C. P. Wolk. 2002. Genetic tools for cyanobacteria. Appl. Microbiol. Biotechnol. 58: 123-137   DOI   ScienceOn
18 Alberte, R. S., A. M. Wood, T. A. Kursar, and R. R. L. Guillard. 1984. Novel phycoerythrins in marine Synechococcus spp.: Characterization, and evolutionary and ecological implications. Plant Physiol. 75: 732-739   DOI   ScienceOn
19 Rippka, R., J. Deruelles, J. B. Waterbury, M. Herdmann, and Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61   DOI
20 Yong, A. C., D. K. Park, H. S. Kim, A. S. Chung, and H. M. Oh. 2004. K:Fe ratio as an indicator of cyanobacterial bloom in a eutrophic lake. J. Microbiol. Biotechnol. 14: 290-296
21 Waterbury, J. B., S. W. Watson, F. W. Valois, and D. G. Franks. 1986. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. Aquat. Sci. 214: 71-120
22 Kana, T. M., N. L. Feiwel, and L. C. Flynn. 1992. Nitrogen starvation in marine Synechococcus strains: Clonal differences in phycobiliprotein breakdown and energy coupling. Mar. Ecol. Prog. Ser. 88: 75-82   DOI
23 Thompson, J. D., D. G. Higgins, and T. J. Gilson. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680   DOI   ScienceOn
24 Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791   DOI   ScienceOn
25 Ecarot-Charrier, B. and R. J. Cedergren. 1976. The preliminary sequence of tRNAfMet from Anacystis nidulans compared with other initiator tRNAs. FEBS Lett. 63: 287-290   DOI   ScienceOn
26 Paquin, B., S. D. Kathe, S. A. Nierzwicki-Bauer, and D. A. Shub. 1997. Origin and evolution of group I introns in cyanobacterial tRNA genes. J. Bacteriol. 179: 6798-6806   DOI
27 Delwiche, C. F., M. Kuhsel, and J. D. Palmer. 1995. Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Mol. Phylogenet. Evol. 4: 110-128   DOI   ScienceOn
28 Willey, J. M., J. B. Waterbury, and E. P. Greenberg. 1987. Sodium-coupled motility in a swimming cyanobacterium. J. Bacteriol. 169: 3429-3434   DOI
29 Bonocora, R. P. and D. A. Shub. 2001. A novel group I intronencoded endonuclease specific for the anticodon region of $tRNA^{fMet}$ genes. Mol. Microbiol. 39: 1299-1306   DOI   ScienceOn
30 Waterbury, J. B. and R. Rippka. 1989. Subsection I. Order Chroococcales. Wettstein 1924, emend. Rippka et al., 1979, pp. 1728-1746. In J. T. Staley, M. P. Bryant, N. Pfennig, J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore
31 Kramer, J. G. and I. Morris. 1990. Growth regulation in irradiance limited marine Synechococcus sp. WJ7803. Arch. Microbiol. 154: 286-293   DOI
32 Wood, A. M. 1985. Adaptation of the photosynthetic apparatus of marine ultraphytoplankton to natural light fields. Nature (London) 316: 253-255   DOI   ScienceOn