• Title/Summary/Keyword: manufacturing parameter

Search Result 660, Processing Time 0.023 seconds

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory

  • Ebrahimi, Farzad;Daman, Mohsen;Mahesh, Vinyas
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.249-263
    • /
    • 2019
  • In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions

  • Soleimani-Javid, Zeinab;Arshid, Ehsan;Khorasani, Mohammad;Amir, Saeed;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.449-460
    • /
    • 2021
  • Flexoelectricity is an interesting materials' property that is more touchable in small scales. This property beside the sandwich structures placed in the center of scientists' attention due to their extraordinary effects on the mechanical properties. Furthermore, in the passage of decades, more elaborated sandwich structures took into consideration results from using honeycomb core. This kind of structure, inspiring from honeycomb core, provides more stiffness to weight ratio, which plays a crucial role in different industries. In this paper, based on the Love-Kirchhoff's hypothesis, Hamilton's principle, modified couple stress theory and Fourier series analytical method, equations of motion for a sandwich plate containing a honeycomb core integrated by two face-sheets have derived and solved analytically. The equations of both face sheets have derived by flexoelectricity consideration. Moreover, it should be noticed that the whole structure rests on the visco-Pasternak foundation. Conducting current research provided an acceptable and throughout study based on flexoelectricity to address the effect of materials' characteristics, length-scale parameter, aspect, and thickness ratios and boundary conditions on the natural frequency of honeycomb sandwich plates. Also, based on the presented figures and tables, there is a close agreement between previous studies and recent work. Due to the high ratio of strength to weight, current model analyzing is capable of taking into account for different vehicles' manufacturing in a high range of industries.

Synthesis of Polyurethane Foam at Room Temperature by Controlling the Gelling Reaction Time (겔화 반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성)

  • Lee, Hojoon;Oh, Chungik;Liow, Chi Hao;Kim, Soyeon;Han, Youngjoon;Oh, Min-Seok;Joo, Hyeong-Uk;Chang, Soo-Ho;Hong, Seungbum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.630-634
    • /
    • 2020
  • We developed a processing recipe to synthesize flexible polyurethane foam with a pore size of 335 ± 107 ㎛. The gelling reaction time was varied from 0 to 30 minutes and the physical properties of the foam were evaluated. The gelling reaction where the polypropylene glycol and tolylene 2,4-diisocyanate (TDI) were reacted to form urethane prepolymer, proceeded until a chemical blowing agent, deionized water, was introduced. Fourier transform infrared (FT-IR) spectra showed that the composition of the foam did not change but the foam height reached a peak value when the gelling reaction time was 10 minutes. We found that increasing the gelling time lessened the coalescence and helped the formation of cells. Lastly, the repeatability of polyurethane foam was confirmed by one-way analysis of variance (ANOVA) by synthesizing ten identical polyurethane foams under the same experimental conditions, including the gelling reaction time. Overall, the new time parameter in-between the gelling and blowing reactions will give extra stability in manufacturing identical polyurethane foams and can be applied to various polyurethane foam processes.

Impact of Outsourcing Risk on Corporate Performance (아웃소싱의 리스크가 기업성과에 미치는 영향)

  • Kim, Lark Sang
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.175-182
    • /
    • 2021
  • In this study, small and medium-sized manufacturing and distribution businesses were asked to demonstrate how the risks that could arise from implementing ITOs affect their performance. Small and medium-sized enterprises that want to reduce costs or secure competitiveness through outsourcing ITO conducted research to identify and analyze risks of ITO and improve corporate performance. Strategic, technical, and financial risks were selected as independent variables for analysis by the survey method. In addition, relationship risk was selected as a parameter and corporate performance was selected as a dependent variable to conduct a path analysis. The analysis showed that the variables injected as independent variables had indirect and total effects on corporate performance. This can be interpreted as the higher the level of awareness of strategic and technological risks and financial risks, the higher the level of relational risk, and thus the positive impact on corporate performance. We expect to improve corporate performance through analysis of more and more risk factors in the future.

Effects of Intermediate Heat Treatment on the Corrosion and Mechanical Properties of Zr Alloy Strip Incorporating Nb (니오븀이 첨가된 Zr 합금 스트립의 부식 및 기계적 특성에 대한 중간열처리 영향)

  • Lee, Myung Ho;Jung, Yang Il;Choi, Byoung Kwon;Park, Sang Yoon;Kim, Hyun Gil;Park, Jeong Yong;Jeong, Yong Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.482-487
    • /
    • 2009
  • In order to investigate the effects of intermediate heat treatment between cold rolling passes on the hardness and corrosion properties of a Zr alloy incorporating Nb (Zr-1.49Nb-0.38Sn-0.20Fe-0.11Cr) strip, three different intermediate heat treatment processes ($580^{\circ}C{\times}4hrs$, $600^{\circ}C{\times}2hrs$ and $620^{\circ}{\times}1hrs$) were designed based on a recrystallization map and an accumulated annealing parameter. Test samples from the different processes were investigated by a hardness test, corrosion test, and microstructure analysis and appropriate heat-treatment conditions were thereupon proposed. The sample subjected to an intermediate heat treatment of $580^{\circ}C{\times}4hrs$ was harder than that undergoing $600^{\circ}C{\times}2hrs$ and $620^{\circ}C{\times}1hr$ while the corrosion resistance of the sample that received an intermediate heat treatment of $580^{\circ}C{\times}4hrs$ was superior to that of the other specimens. Considering the trade-off of hardness and corrosion resistance, an intermediate heat treatment process of $600^{\circ}C{\times}2hrs$ is proposed to improve the manufacturing process of the alloy strip.

The methods to improve the performance of predictive model using machine learning for the quality properties of products (머신러닝을 활용한 제품 특성 예측모델의 성능향상 방법 연구)

  • Kim, Jong Hoon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.749-756
    • /
    • 2021
  • Thanks to PLC and IoT Sensor, huge amounts of data has been accumulated onto the companies' databases. Machine Learning Algorithms for the predictive model with good performance have been widely utilized in the manufacturing process. We present how to improve the performance of machine learning predictive models. To improve the performance of the predictive model, typical techniques such as increasing the sample size, optimizing the hyper parameters for the algorithm, and selecting a proper machine learning algorithm for the predictive model would be shown. We suggest some new ways to make the model performance much better. With the proposed methods, we can build a better predictive model for predicting and controlling product qualities and save incredibly large amount of quality failure cost.

Gadolinium- and lead-containing functional terpolymers for low energy X-ray protection

  • Zhang, Yu-Juan;Guo, Xin-Tao;Wang, Chun-Hong;Lu, Xiang An;Wu, De-Feng;Zhang, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4130-4136
    • /
    • 2021
  • By polymerization of gadolinium methacrylate (Gd (MAA)3), lead methacrylate (Pb(MAA)2) and methyl methacrylate (MMA), Gd and Pb were chemically bonded into polymers. The X-ray shielding performance was evaluated by Monte Carlo simulation method, and the results showed that the more metal functional organic monomer, the better the shielding performance of terpolymers. When the X-ray energy is 65 keV, Gd (MAA)3-containing polymers have better shielding performance than Pb(MAA)2-containing polymers. Gd could compensate for the weak absorption region of Pb. Therefore, polymers containing both Gd and Pb enhanced shielding efficiency against X-ray in various low-energy ranges. For obtaining terpolymers with uniform monomer compositions, the relationship between the monomer composition of the terpolymers and the conversion level was optimized by calculating the reactivity ratios. The value of reactivity ratios of r (Gd (MAA)3/Pb(MAA)2), r (Pb(MAA)2/Gd (MAA)3), r (Gd (MAA)3/MMA), r (MMA/Gd (MAA)3), r (Pb(MAA)2/MMA) and r (MMA/Pb(MAA)2) was 0.483, 0.004, 0.338, 2.508, 0.255, 0.029. The terpolymers with uniform monomer composition could be obtained by controlling the monomer compositions or conversion levels. The results can provide new radiation protection materials and contribute to the improvement in nuclear safety.

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions

  • Mimoun Bennedjadi;Salem Mohammed Aldosari;Abdelbaki Chikh;Abdelhakim Kaci;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdeldjebbar Tounsi;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.159-177
    • /
    • 2023
  • In the present work, a simple and refined shear deformation theory is used to analyze the effect of visco-elastic foundation on the buckling response of exponentially-gradient sandwich plates under various boundary conditions. The proposed theory includes indeterminate integral variables kinematic with only four generalized parameters, in which no shear correction factor is used. The visco-Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The four governing equations for FGM sandwich plates are derived by employing principle of virtual work. To solve the buckling problem, Galerkin's approach is utilized for FGM sandwich plates for various boundary conditions. The analytical solutions for critical buckling loads of several types of powerly graded sandwich plates resting on visco-Pasternak foundations under various boundary conditions are presented. Some numerical results are presented to indicate the effects of inhomogeneity parameter, elastic foundation type, and damping coefficient of the foundation, on the critical buckling loads.

Techno-economic Analysis of Power To Gas (P2G) Process for the Development of Optimum Business Model: Part 2 Methane to Electricity Production Pathway

  • Partho Sarothi Roy;Young Don Yoo;Suhyun Kim;Chan Seung Park
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • This study shows the summary of the economic performance of excess electricity conversion to hydrogen as well as methane and returned conversion to electricity using a fuel cell. The methane production process has been examined in a previous study. Here, this study focuses on the conversion of methane to electricity. As a part of this study, capital expenditure (CAPEX) is estimated under various sized plants (0.3, 3, 9, and 30 MW). The study shows a method for economic optimization of electricity generation using a fuel cell. The CAPEX and operating expenditure (OPEX) as well as the feed cost are used to calculate the discounted cash flow. Then the levelized cost of returned electricity (LCORE) is estimated from the discounted cash flow. This study found the LCORE value was ¢10.2/kWh electricity when a 9 MW electricity generating fuel cell was used. A methane production plant size of 1,500 Nm3/hr, a methane production cost of $11.47/mcf, a storage cost of $1/mcf, and a fuel cell efficiency of 54% were used as a baseline. A sensitivity analysis was performed by varying the storage cost, fuel cell efficiency, and excess electricity cost by ±20%, and fuel cell efficiency was found as the most dominating parameter in terms of the LCORE sensitivity. Therefore, for the best cost-performance, fuel cell manufacturing and efficiency need to be carefully evaluated. This study provides a general guideline for cost performance comparison with LCORE.