Browse > Article
http://dx.doi.org/10.1016/j.net.2021.06.021

Gadolinium- and lead-containing functional terpolymers for low energy X-ray protection  

Zhang, Yu-Juan (School of Chemistry and Chemical Engineering, Yangzhou University)
Guo, Xin-Tao (Department of Materials Research, AVIC Manufacturing Technology Institute)
Wang, Chun-Hong (School of Chemistry and Chemical Engineering, Yangzhou University)
Lu, Xiang An (Guangling College of Yangzhou University)
Wu, De-Feng (School of Chemistry and Chemical Engineering, Yangzhou University)
Zhang, Ming (School of Chemistry and Chemical Engineering, Yangzhou University)
Publication Information
Nuclear Engineering and Technology / v.53, no.12, 2021 , pp. 4130-4136 More about this Journal
Abstract
By polymerization of gadolinium methacrylate (Gd (MAA)3), lead methacrylate (Pb(MAA)2) and methyl methacrylate (MMA), Gd and Pb were chemically bonded into polymers. The X-ray shielding performance was evaluated by Monte Carlo simulation method, and the results showed that the more metal functional organic monomer, the better the shielding performance of terpolymers. When the X-ray energy is 65 keV, Gd (MAA)3-containing polymers have better shielding performance than Pb(MAA)2-containing polymers. Gd could compensate for the weak absorption region of Pb. Therefore, polymers containing both Gd and Pb enhanced shielding efficiency against X-ray in various low-energy ranges. For obtaining terpolymers with uniform monomer compositions, the relationship between the monomer composition of the terpolymers and the conversion level was optimized by calculating the reactivity ratios. The value of reactivity ratios of r (Gd (MAA)3/Pb(MAA)2), r (Pb(MAA)2/Gd (MAA)3), r (Gd (MAA)3/MMA), r (MMA/Gd (MAA)3), r (Pb(MAA)2/MMA) and r (MMA/Pb(MAA)2) was 0.483, 0.004, 0.338, 2.508, 0.255, 0.029. The terpolymers with uniform monomer composition could be obtained by controlling the monomer compositions or conversion levels. The results can provide new radiation protection materials and contribute to the improvement in nuclear safety.
Keywords
Metal-containing terpolymers; Mass attenuation coefficient; Parameter estimation; Ternary reactivity ratios;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A.R. Justino, N. Canha, C. Gamelas, J.T. Coutinho, S.M. Almeida, Contribution of micro-pixe to the characterization of settled dust events in an urban area affected by industrial activities, J. Radioanal. Nucl. Chem. 322 (3) (2019) 1953-1964.   DOI
2 S. Nambiar, J.T.W. Yeow, Polymer-composite materials for radiation protection, ACS Appl. Mater. Interfaces 4 (11) (2012) 5717-5726.   DOI
3 P.F. Lou, X.B. Teng, Q.X. Jia, Y.Q. Wang, L.Q. Zhang, Preparation and structure of rare earth/thermoplastic polyurethane fiber for X-ray shielding, J. Appl. Polym. Sci. 136 (17) (2019). https://doi:10.1002/app.47435.   DOI
4 M.I. Sayyed, A.A. Ati, M.H.A. Mhareb, K.A. Mahmoud, K.M. Kaky, S.O. Baki, M.A. Mahdi, Novel tellurite glass (60-x)TeO2-10GeO(2)-20ZnO-10BaO-xBi(2) O(3)for radiation shielding, J. Alloys Compd. 844 (2020). https://doi:10.1016/j.jallcom.2020.155668.   DOI
5 N. Haruo, U. Hiroshi, N. Kunikazu, Japanese Pat., 53063310, Kyowa Gas Chemical Industry Co., Ltd., Japan, 1978.
6 C.H. Wang, S. Wang, Y.J. Zhang, Z.F. Wang, J.L. Liu, M. Zhang, Self-polymerization and co-polymerization kinetics of gadolinium methacrylate, J. Rare Earths 36 (3) (2018) 298-303.   DOI
7 N. Kazemi, T.A. Duever, A. Penlidis, Demystifying the estimation of reactivity ratios for terpolymerization systems, AIChE J. 60 (5) (2014) 1752-1766.   DOI
8 A. Jukic, M. Rogosic, E. Vidovic, Z. Janovic, Terpolymerization kinetics of methyl methacrylate or styrene/dodecyl methacrylate/octadecyl methacrylate systems, Polymer International, Poly. Int 56 (1) (2006) 112-120.
9 K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code, Nucl. Eng. Technol. 51 (2019) 1835-1841.   DOI
10 A. Alhudhaif, K. Polat, O. Karaman, Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images, Expert Syst. Appl. 180 (2021) 115141, 115141.   DOI
11 L. Liu, L. He, C. Yang, W. Zhang, R.G. Jin, L.Q. Zhang, In situ reaction and radiation protection properties of Gd(AA)(3)/NR composites, Macromol. Rapid Commun. 25 (12) (2004) 1197-1202.   DOI
12 Y.J. Zhang, X.T. Guo, C.H. Wang, D.F. Wu, M. Zhang, Self-polymerization and co-polymerization kinetics of lead methacrylate, Rare Met. 40 (3) (2021) 736-742.   DOI
13 A.D. Azzahari, R. Yahya, M.R. Ahmad, M.B. Zubir, New terpolymers from nbutyl acrylate, glycidyl methacrylate and tetrahydrofurfuryl acrylate: synthesis, characterisation and estimation of reactivity ratios. Fibers and Polymers, Fiber, Polymja 15 (3) (2014) 437-445.   DOI
14 N. Kazemi, T.A. Duever, A. Penlidis, A powerful estimation scheme with the error-in-variables-model for nonlinear cases: reactivity ratio estimation examples, Comput. Chem. Eng. 48 (2013) 200-208.   DOI
15 S. Srikanth, G.J.N. Raju, Quantitative study of trace elements in coal and coal related ashes using PIXE, J. Geol. Soc. India 94 (5) (2019) 533-537.   DOI
16 J. Cruz, M. Manso, V. Corregidor, R.J.C. Silva, E. Figueiredo, M.L. Carvalho, L.C. Alves, Surface analysis of corroded XV-XVI century copper coins by µ-XRF and µ-PIXE/µ-EBS self-consistent analysis, Mater. Char. 161 (2020). https://doi:10.1016/j.matchar.2020.110170.   DOI
17 P.M. Reilly, H. Patino-Leal, A bayesian study of the error-in-variables model, Technometrics 23 (3) (1981) 221-231.   DOI
18 S. Kavlak, A. Guner, Z.M.O. Rzayev, Functional terpolymers containing vinylphosphonic acid: the synthesis and characterization of poly(vinylphosphonic acid-co-styrene-co-maleic anhydride), J. Appl. Polym. Sci. 125 (5) (2012) 3617-3629.   DOI
19 A.J. Scott, A. Penlidis, Binary vs. ternary reactivity ratios: appropriate estimation procedures with terpolymerization data, Eur. Polym. J. 105 (2018) 442-450.   DOI
20 P.G. Sanghvi, N.K. Pokhriyal, S. Devi, Effect of partitioning of monomer on the reactivities of monomers in microemulsion, J. Appl. Polym. Sci. 84 (10) (2002) 1832-1837.   DOI
21 A. Scott, N. Kazemi, A. Penlidis, AMPS/AAm/AAc terpolymerization: experimental verification of the EVM framework for ternary reactivity ratio estimation, Processes 5 (4) (2017) 9-24.   DOI
22 A. Scott, A. Penlidis, Computational package for copolymerization reactivity ratio estimation: improved access to the error-in-variables-model, Processes, Processes 6 (1) (2018) 8.   DOI
23 Y. Wang, G.K. Wang, T. Hu, S.P. Wen, S. Hu, L. Liu, Enhanced photon shielding efficiency of a flexible and lightweight rare earth/polymer composite: a Monte Carlo simulation study, Nucl. Eng. Technol. 52 (7) (2020) 1565-1570.   DOI
24 J.J.M. Goeij, Nuclear analytical methods in the life sciences, Biol. Trace Elem. Res. 43-45 (1) (1994) 9-17.   DOI
25 W. Maenhaut, Present role of PIXE in atmospheric aerosol research, Nucl. Instrum. Methods B 363 (2015) 86-91.   DOI
26 J. Reyes-Herrera, J. Miranda, O.G. de Lucio, Simultaneous PIXE and XRF elemental analysis of atmospheric aerosols, Microchem. J. 120 (2015) 40-44.   DOI
27 M. Dube, R.A. Sanayei, A. Penlidis, K.F. O'Driscoll, P.M. Reilly, A microcomputer program for estimation of copolymerization reactivity ratios, J. Polym. Sci., Polym. Chem. Ed. 29 (5) (1991) 703-708.   DOI
28 N. Kazemi, T.A. Duever, A. Penlidis, Demystifying the estimation of reactivity ratios for terpolymerization systems, AIChE J. 60 (5) (2014) 1752-1766.   DOI
29 M. Riahinezhad, N. Kazemi, N. McManus, A. Penlidis, Effect of ionic strength on the reactivity ratios of acrylamide/acrylic acid (sodium acrylate) copolymerization, J. Appl. Polym. Sci. 131 (20) (2014) 40949.
30 F.K. Yousefi, A. Jannesari, S. Pazokifard, M.R. Saeb, A.J. Scott, A. Penlidis, Reactivity ratio estimation from cumulative copolymer composition Data,- Macromol, React. Eng. 13 (4) (2019) 1900014.   DOI
31 A.L. Polic, T.A. Duever, A. Penlidis, Case studies and literature review on the estimation of copolymerization reactivity ratios, J. Polym. Sci., Polym. Chem. Ed. 36 (5) (1998) 813-822.   DOI
32 I. Soljic, A. Jukic, Z. Janovic, Terpolymerization kinetics of N,N-dimethylaminoethyl methacrylate/alkyl methacrylate/styrene systems. Polymer Engineering & Science, Polym. Eng. Sci. 50 (3) (2009) 577-584.
33 N. Kazemi, T.A. Duever, A. Penlidis, Reactivity ratio estimation from cumulative copolymer composition Data,Macromol, React. Eng. 5 (9-10) (2011) 385-403.   DOI
34 P.P. Jiang, J.B. Chen, X.M. Lin, Chinese Pat., 101319025, Jiangnan University, Peop. Rep, China, 2010.
35 I. Skeist, Copolymerization: the composition distribution curve, J. Am. Chem. Soc. 68 (9) (1946) 1781-1784.   DOI
36 O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys, Nucl. Eng. Technol. 51 (3) (2019) 853-859.   DOI
37 X.F. Li, G.F. Wang, J.H. Chu, L.D. Yu, Charge integration in external PIXE-PIGE for the analysis of aerosol samples, Instrum. Meth. B. 289 (2012) 1-4.   DOI
38 E. Punzon-Quijorna, M. Kelemen, P. Vavpeti, R. Kavalar, S.K. Fokter, Particle induced x-ray emission (PIXE) for elemental tissue imaging in hip modular prosthesis fracture case, Instrum. Meth. B. 462 (2020) 182-186.   DOI
39 K. Nadeem, J. Hussain, N.U. Haq, A.U. Haq, I. Ahmad, A proton induced X-ray emission (PIXE) analysis of concentration of major/trace and toxic elements in broiler gizzard and flesh of Tehsil Gujar Khan area in Pakistan, Nucl. Eng. Technol. 51 (8) (2019) 2042-2049.   DOI
40 T. Alfrey, G. Goldfinger, The mechanism of copolymerization, The Journal of Chemical Physics, J. Chem. Phys. 12 (6) (1944) 205-209.   DOI
41 S. Jayakumar, T. Saravanan, J. Philip, Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites, Appl. Nanosci. 7 (8) (2017) 919-931.   DOI