Browse > Article
http://dx.doi.org/10.12989/anr.2019.7.4.249

Thermo-mechanical vibration analysis of curved imperfect nano-beams based on nonlocal strain gradient theory  

Ebrahimi, Farzad (Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University)
Daman, Mohsen (Mechanical Engineering Department, Faculty of Engineering, Imam Khomeini International University)
Mahesh, Vinyas (Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology)
Publication Information
Advances in nano research / v.7, no.4, 2019 , pp. 249-263 More about this Journal
Abstract
In the current paper, an exact solution method is carried out for analyzing the thermo-mechanical vibration of curved FG nano-beams subjected to uniform thermal environmental conditions, by considering porosity distribution via nonlocal strain gradient beam theory for the first time. Nonlocal strain gradient elasticity theory is adopted to consider the size effects in which the stress for not only the nonlocal stress field but also the strain gradients stress field is considered. It is perceived that during manufacturing of functionally graded materials (FGMs) porosities and micro-voids can be occurred inside the material. Material properties of curved porous FG nanobeam are assumed to be temperature-dependent and are supposed to vary through the thickness direction of beam which modeled via modified power-law rule. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG nano-structures. The governing equations and related boundary condition of curved porous FG nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is utilized to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loading. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality parameter, porosity volume fractions, thermal effect, gradient index, opening angle and aspect ratio on the natural frequency of curved FG porous nanobeam are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.
Keywords
curved FG beam; porous materials; thermo-mechanical vibration; nonlocal strain gradient theory;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Hamed, M.A. and Eltaher, M.A., Sadoun, A.M. and Almitani, K.H. (2016), "Free vibration of symmetric and sigmoid functionally graded nanobeams", Appl. Phys. A, 122(9), 829. https://doi.org/10.1007/s00339-016-0324-0   DOI
2 Hosseini, S. and Rahmani, O. (2016), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Phys. A, 122(3), 1-11. https://doi.org/10.1007/s00339-016-9696-4
3 Hu, B., Ding, Y., Chen, W., Kulkarni, D., Shen, Y., Tsukruk, V.V. and Wang, Z.L. (2010), "External-Strain Induced Insulating Phase Transition in VO2 Nanobeam and Its Application as Flexible Strain Sensor", Adv. Mater., 22(45), 5134-5139. https://doi.org/10.1002/adma.201002868   DOI
4 Kananipour, H., Ahmadi, M. and Chavoshi, H. (2014), "Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams", Latin Am. J. Solids Struct., 11(5), 848-853. http://dx.doi.org/10.1590/S1679-78252014000500007   DOI
5 Koizumi, M. and Niino, M. (1995), "Overview of FGM Research in Japan", Mrs Bulletin, 20(1), 19-21. https://doi.org/10.1557/S0883769400048867   DOI
6 Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano. Res., Int. J., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135
7 Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X   DOI
8 Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013   DOI
9 Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011   DOI
10 Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014   DOI
11 Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001   DOI
12 Malekzadeh, P., Haghighi, M.G. and Atashi, M.M. (2010), "Outof-plane free vibration of functionally graded circular curved beams in thermal environment", Compos. Struct., 92(2), 541-552. https://doi.org/10.1016/j.compstruct.2009.08.040   DOI
13 Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on IV characteristics of CNTFETs", Adv. Nano. Res., Int. J., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061   DOI
14 Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng., 38(8), 2193-2211. https://doi.org/10.1007/s40430-015-0482-6   DOI
15 Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. eds. (2013), Functionally Graded Materials: Design, Processing and Applications, Springer Science & Business Media.
16 Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Non-Linear Mech., 101, 157-173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014   DOI
17 Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng.: A, 362(1), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X   DOI
18 Mortensen, A. and Suresh, S. (2013), "Functionally graded metals and metal-ceramic composites: Part 1 Processing", Int. Mater. Rev., 40(6), 239-265. https://doi.org/10.1179/imr.1995.40.6.239   DOI
19 Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), 083514. https://doi.org/10.1063/1.3496627   DOI
20 Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006   DOI
21 Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003   DOI
22 Setoodeh, A., Derahaki, M. and Bavi, N. (2015), "DQ thermal buckling analysis of embedded curved carbon nanotubes based on nonlocal elasticity theory", Latin Am. J. Solids Struct., 12(10), 1901-1917. http://dx.doi.org/10.1590/1679-78251894   DOI
23 Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004   DOI
24 She, G.L., Shu, X. and Ren, Y.R. (2017a), "Thermal buckling and postbuckling analysis of piezoelectric FGM beams based on high-order shear deformation theory", J. Thermal Stress., 40(6), 783-797. https://doi.org/10.1080/01495739.2016.1261009   DOI
25 She, G.L., Ren, Y.R., Yuan, F.G. and Xiao, W.S. (2018a), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35. https://doi.org/10.1016/j.ijengsci.2017.12.009   DOI
26 She, G.L., Yuan, F.G. and Ren, Y.R. (2017b), "Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments", Compos. Struct., 170, 111-121. https://doi.org/10.1016/j.compstruct.2017.03.010   DOI
27 She, G.L., Yuan, F.G. and Ren, Y.R. (2017c), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014   DOI
28 She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017d), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005   DOI
29 She, G.L., Yuan, F.G. and Ren, Y.R. (2018b), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74. https://doi.org/10.1016/j.ijengsci.2018.05.002   DOI
30 She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018c), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133, 368. https://doi.org/10.1140/epjp/i2018-12196-5   DOI
31 She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B. and Xiao, W.S. (2018d), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Composite Structures, 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063   DOI
32 She, G.L., Yuan, F.G., Karami, B., Ren, Y.R. and Xiao, W.S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74. https://doi.org/10.1016/j.ijengsci.2018.11.005   DOI
33 Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano. Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001   DOI
34 Shen, H.-S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC press.
35 Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., Int. J.., 66(1), 85-96. https://doi.org/10.12989/sem.2018.66.1.085
36 Stolken, J. and Evans, A. (1998), "A microbend test method for measuring the plasticity length scale", Acta Materialia, 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0   DOI
37 Touloukian, Y.S. (1966), "Thermophysical Propertiesof High Temperature Solid Materials" 6. Intermetallics, Ceramets, Polymers, andCompositeSystems. Part II. Ceramets, Polymers, CompositeSystems, DTIC Document.
38 Wang, C.M. and Duan, W. (2008), "Free vibration of nanorings/arches based on nonlocal elasticity", J. Appl. Phys., 104(1), 014303. https://doi.org/10.1063/1.2951642   DOI
39 Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 50(5), 1331-1342. https://doi.org/10.1007/s11012-014-0094-8   DOI
40 Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002   DOI
41 Zhang, Y.Y., Wang, C.M. and Challamel, N. (2009), "Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model", J. Eng. Mech., 136(5), 562-574. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000107   DOI
42 Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. http://dx.doi.org/10.12989/sem.2015.53.6.1143   DOI
43 Yan, Z. and Jiang, L. (2011), "Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects", J. Phys. D: Appl. Phys., 44(36), 365301. https://doi.org/10.1088/0022-3727/44/36/365301   DOI
44 Youcef, D.O., Kaci, A., Houari, M.S.A., Tounsi, A., Benzair, A. and Heireche, H. (2015), "On the bending and stability of nanowire using various HSDTs", Adv. Nano. Res., Int. J., 3(4), 177-191. https://doi.org/10.12989/anr.2015.3.4.177   DOI
45 Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO 2-NiCr functionally graded material by powder metallurgy", Mater. Chemi. Phys., 68(1), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2   DOI
46 Attia, M.A., Eltaher, M.A., Soliman, A., Abdelrahman, A. and Alshorbagy, A.E. (2018), "Thermoelastic Crack Analysis in Functinally Graded Piplines Conveying Natural Gas by a FEM", Int. J. Appl. Mech., 10(4), 1850036. https://doi.org/10.1142/S1758825118500369   DOI
47 Agwa, M.A. and Eltaher, M.A. (2016), "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Phys. A, 122(4), 1-8. https://doi.org/10.1007/s00339-016-9934-9
48 Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano. Res., Int. J., 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039
49 Altabey, W.A. (2017), "An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS", Adv. Nano Res., Int. J., 5(4), 337-357. https://doi.org/10.12989/anr.2017.5.4.337
50 Ansari, R., Gholami, R. and Sahmani, S. (2013), "Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory", Arch. Appl. Mech. 83(10), 1439-1449. https://doi.org/10.1007/s00419-013-0756-3   DOI
51 Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano. Res., Int. J., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393   DOI
52 Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano. Res., Int. J., 3(1), 29-37. http://dx.doi.org/10.12989/anr.2015.3.1.029   DOI
53 Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano. Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147
54 Castrucci, P. (2014), "Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices", Adv. Nano. Res., Int. J., 2(1), 23-56. http://dx.doi.org/10.12989/anr.2014.2.1.023   DOI
55 Ebrahimi, F. and Barati, M.R. (2016d), "Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 0954406216668912. https://doi.org/10.1177/0954406216668912
56 Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano. Res., Int. J., 3(4), 193-206. http://dx.doi.org/10.12989/anr.2015.3.4.193   DOI
57 Daulton, T.L., Bondi, K.S. and Kelton, K.F. (2010), "Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials-Application to Al 88- x Y 7 Fe 5 Ti x metallic glasses", Ultramicroscopy, 110(10), 1279-1289. https://doi.org/10.1016/j.ultramic.2010.05.010   DOI
58 Ebrahimi, F. and Barati, M.R. (2016a), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazil. Soc. Mech. Sci. Eng., 39(3), 937-952. https://doi.org/10.1007/s40430-016-0551-5   DOI
59 Ebrahimi, F. and Barati, M.R. (2016b), "Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams", Eur. Phys. J. Plus, 131(9), 346. https://doi.org/10.1140/epjp/i2016-16346-5   DOI
60 Ebrahimi, F. and Barati, M.R. (2016c), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Science, 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001   DOI
61 Ebrahimi, F. and Barati, M.R. (2016e), "Thermal environment effects on wave dispersion behavior of inhomogeneous strain gradient nanobeams based on higher order refined beam theory", J. Thermal Stress, 39(12), 1560-1570. https://doi.org/10.1080/01495739.2016.1219243   DOI
62 Ebrahimi, F. and Daman, M. (2017b), "Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment", Struct. Eng. Mech., Int. J., 64(1), 121-133. http://dx.doi.org/10.12989/sem.2017.64.1.121
63 Ebrahimi, F. and Barati, M.R. (2017a), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092   DOI
64 Ebrahimi, F. and Barati, M.R. (2017b), "A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams", Compos. Struct., 159, 174-182. https://doi.org/10.1016/j.compstruct.2016.09.058   DOI
65 Ebrahimi, F. and Daman, M. (2016a), "Investigating Surface Effects on Thermomechanical Behavior of Embedded Circular Curved Nanosize Beams", J. Eng., 2016. http://dx.doi.org/10.1155/2016/9848343
66 Ebrahimi, F. and Daman, M. (2016b), "An Investigation of Radial Vibration Modes of Embedded Double-Curved-Nanobeam-Systems", Cankaya Univ. J. Sci. Eng., 13, 58-79.
67 Ebrahimi, F. and Daman, M. (2017a), "Nonlocal thermoelectro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam", Smart Struct. Syst., Int. J., 20(3), 351-368. http://dx.doi.org/10.12989/sss.2017.20.3.351
68 Ebrahimi, F. and Jafari, A. (2016), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., Int. J., 59(2), 343-371. http://dx.doi.org/10.12989/sem.2016.59.2.343   DOI
69 Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010   DOI
70 Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y   DOI
71 Ebrahimi, F., Daman, M. and Jafari, A. (2017), "Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment", Smart Struct. Syst., Int. J., 20(6), 709-728. http://dx.doi.org/10.12989/sss.2017.20.6.709
72 Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014a), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Computat., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028   DOI
73 Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano. Res., Int. J., 4(2), 85-111. https://doi.org/10.12989/anr.2016.4.2.085
74 Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Computat., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090   DOI
75 Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.amc.2011.12.090   DOI
76 Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014b), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Computat., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076   DOI
77 Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014   DOI
78 Eltaher, M.A., El-Borgi S. and Reddy J.N. (2016a), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013   DOI
79 Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016b), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Math. Model., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026   DOI
80 Eltaher, M.A., Attia, M.A., Soliman, A.E. and Alshorbagy, A.E. (2018a), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., Int. J., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097
81 Eltaher, M.A., Fatema-Alzahraa Omar, Abdalla W.S. and E.H. Gad (2018b), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Waves Random Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693   DOI
82 Eltaher, M.A., Agwa, M. and Kabeel, A. (2018c), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Computat. Mech., 4(2), 75-86. https://doi.org/10.22055/JACM.2017.22579.1136
83 Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018d), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0   DOI
84 Eringen, A.C. (1972a), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X   DOI
85 Eringen, A.C. (1972b), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5   DOI
86 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803   DOI
87 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
88 Fleck, N. and Hutchinson, J. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N   DOI