Effects of Intermediate Heat Treatment on the Corrosion and Mechanical Properties of Zr Alloy Strip Incorporating Nb

니오븀이 첨가된 Zr 합금 스트립의 부식 및 기계적 특성에 대한 중간열처리 영향

  • 이명호 (한국원자력연구원 원자력융합기술개발부) ;
  • 정양일 (한국원자력연구원 원자력융합기술개발부) ;
  • 최병권 (한국원자력연구원 원자력융합기술개발부) ;
  • 박상윤 (한국원자력연구원 원자력융합기술개발부) ;
  • 김현길 (한국원자력연구원 원자력융합기술개발부) ;
  • 박정용 (한국원자력연구원 원자력융합기술개발부) ;
  • 정용환 (한국원자력연구원 원자력융합기술개발부)
  • Received : 2008.11.28
  • Published : 2009.08.25

Abstract

In order to investigate the effects of intermediate heat treatment between cold rolling passes on the hardness and corrosion properties of a Zr alloy incorporating Nb (Zr-1.49Nb-0.38Sn-0.20Fe-0.11Cr) strip, three different intermediate heat treatment processes ($580^{\circ}C{\times}4hrs$, $600^{\circ}C{\times}2hrs$ and $620^{\circ}{\times}1hrs$) were designed based on a recrystallization map and an accumulated annealing parameter. Test samples from the different processes were investigated by a hardness test, corrosion test, and microstructure analysis and appropriate heat-treatment conditions were thereupon proposed. The sample subjected to an intermediate heat treatment of $580^{\circ}C{\times}4hrs$ was harder than that undergoing $600^{\circ}C{\times}2hrs$ and $620^{\circ}C{\times}1hr$ while the corrosion resistance of the sample that received an intermediate heat treatment of $580^{\circ}C{\times}4hrs$ was superior to that of the other specimens. Considering the trade-off of hardness and corrosion resistance, an intermediate heat treatment process of $600^{\circ}C{\times}2hrs$ is proposed to improve the manufacturing process of the alloy strip.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. M. H. Lee, Y. I. Jung, J. Y. Park, and Y. H. Jeong, J. Kor. Inst. Met. & Mater. 47, 474 (2008)
  2. J. H. Baek, Y. H. Jeong, and I. S. Kim, J. Nucl. Mater. 280, 235 (2000) https://doi.org/10.1016/S0022-3115(99)00288-3
  3. T. Isobe, Y. Matsuo, and Y. Mae, ASTM STP 1245, 437(1994)
  4. J. P. Mardon and D. Charquet, J. Senevat, ASTM STP 1354, 505 (2000)
  5. Y. I. Jung, M. H. Lee, H. G. Kim, J. Y. Park, and Y. H. Jeong, J. Alloys & Composite Materials, August 18 (2008)
  6. F. J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena (2nd ed.), Elsevier Ltd. (2004)
  7. Y. H. Jeong, H. G. Kim, and To Hoon Kim, J. Nucl. Mater., 317, 1 (2003) https://doi.org/10.1016/S0022-3115(02)01676-8
  8. H. G. Kim, S. Y. Park, M. H. Lee, Y. H. Jeong, and S. D. Kim, J. Nucl. Mater. 373, 429 (2008) https://doi.org/10.1016/j.jnucmat.2007.05.035
  9. J. Winton and R. A. Murgatroyd, Electrochem. Technol. 4, 358 (1966)
  10. C. E. Ells and B. A. Cheadle, J. Nucl. Mater. 23, 257 (1967) https://doi.org/10.1016/0022-3115(67)90158-4