• Title/Summary/Keyword: manufacturing method

Search Result 7,203, Processing Time 0.034 seconds

Internal evaluation of provisional restorations according to the dental CAD/CAM manufacturing method : Three-dimensional superimpositional analysis (치과 CAD/CAM 가공방식에 따른 임시보철물의 내면 적합도 : 3차원 중첩 분석)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2019
  • Purpose: The purpose of the present study was to compare the internal fit of two different temporary restorations fabricated by dental CAD/CAM system and to evaluate clinical effectiveness. Methods: Composite resin tooth of the maxillary first molar was prepared as occlusal reduction(2.0mm), axial reduction(1mm offset), vertical angle(6 degree) and chamfer margin for a temporary crown and duplicated epoxy die was fabricated. The epoxy dies were used to fabricate provisional restorations by CAD/CAM milling technique or 3D-printing technique. The inner data from all crowns were superimposed on the master die file in the 'best-fit alignment' method using 3D analysis software. Statistical analysis was performed using a Wilcoxon's rank sum test for differences between groups. Results: It showed that the internal RMS(Root Mean Square) values of the additive group were significantly larger than those of other group. No significant differences in internal discrepancies were observed in the temporary crowns among the 2 groups with different manufacturing method. Conclusion: All the groups had the internal fit within the clinical acceptable range (< $50{\mu}m$). The continuous research in the future to be applied clinically for the adaptation of additive manufacturing technique are needed.

Research on Risk Assessment of Lithium-ion Battery Manufacturing Process Considering Cell Materials (셀소재를 고려한 리튬2차전지 제조공정 위험성 평가 방법 연구)

  • Kim, Taehoon
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.76-87
    • /
    • 2022
  • Lithium-ion batteries (LIBs) have attracted much interest for their high energy density (>150 mAh/g), high capacity, low self-discharge rate, and high coulombic efficiency. However, with the successful commercialization of LIBs, fire and explosion incidents are likely to increase. The thermal runaway is known as the major factor in battery-related accidents that can lead to a series of critical conditions. Considering this, recent studies have shown an increased interest in countering the safety issues associated with LIBs. Although safety standards for LIB use have recently been formulated, little attention has been paid to the safety around the manufacturing process for battery products. The present study introduces a risk assessment method suitable for assessing the safety of the LIB-manufacturing process. In the assessment method, a compensation parameter (Z-factor) is employed to correctly evaluate the process's safety on the basis of the type of material (e.g., metal anode, liquid electrolyte, solid-state electrolytes) utilized in a cell. The proposed method has been applied to an 18650 cell-manufacturing process, and three sub-processes have been identified as possibly vulnerable parts (risk index: >4). This study offers some crucial insights into the establishment of safety standards for battery-manufacturing processes.

Development of Machine Learning Method for Selection of Machining Conditions in Machining of 3D Printed Composite Material (3D 프린팅 복합소재의 가공에서 가공 조건 선정을 위한 머신러닝 개발에 관한 연구)

  • Kim, Min-Jae;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.137-143
    • /
    • 2022
  • Composite materials, being light-weight and of high mechanical strength, are increasingly used in various industries such as the aerospace, automobile, sporting-goods manufacturing, and ship-building industries. Recently, manufacturing of composite materials using 3D printers has increased. 3D-printed composite materials are made in free-form and adapted for end-use by adjusting the fiber content and orientation. However, research on the machining of 3D printed composite materials is limited. The aim of this study is to develop a machine learning method to select machining conditions for machining of 3D-printed composite materials. The composite material was composed of Onyx and carbon fibers and stacked sequentially. The experiments were performed using the following machining conditions: spindle speed, feed rate, depth of cut, and machining direction. Cutting forces of the different machining conditions were measured by milling the composite materials. PCA, a method of machine learning, was developed to select the machining conditions and will be used in subsequent experiments under various machining conditions.

A Study on the Efficient Meshfree Method Using Adaptive Refinement Analysis (적응적 세분화기법을 이용한 효율적 무요소법에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.50-56
    • /
    • 2010
  • Meshfree methods show many advantages over finite element method(FEM) in the class of problems for which the remeshing process is inevitable when the conventional FEM used, such as propagating crack problems, large deformation and so on. One of the promising applications of meshfree methods is the adaptive refinement for problems having multi-scale nature. In this study, an adaptive node generation procedure is proposed and several numerical examples are also presented to illustrate the efficiency of proposed method.

Comparison of adhesive and non-adhesive manufacturing methods of men's jacket - Focusing on men's jacket aged 30 to 49 - (남성 재킷의 접착 제작방식과 비접착 제작방식 비교 - 30~49세 남성 재킷을 중심으로 -)

  • Dong Kuk Kwon
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.6
    • /
    • pp.738-755
    • /
    • 2023
  • The purpose of this study is to provide basic data for the production of jackets with high fit by comparing and analyzing the adhesive and non-adhesive production methods of men's jackets. An analysis of the manufacturing method showcased differences between the adhesive and non-adhesive manufacturing methods in the cutting and wick attachment method, the shape and attachment method of the chest reinforcing wick, the sleeve attachment method, and the shoulder pad and sleeve reinforcing cloth attachment method. In evaluating the outfit, the overall fit of the shoulder, the fit of the chest, and the fit of the armpit were found to be high in the non-adhesive production method. In evaluating appearance evaluation, the front shoulder, chest, and sleeve overall appearance showed a high non-adhesive production method. Therefore, in order to increase the wearability of the shoulder pad and the the attachment method of the upper sleeve reinforcing cloth, the non-adhesive production method should be used, and in order to increase the overall wearability and armpit wear of the chest, the difference in the attachment method, and the reinforcement method of the armhole should be used. In addition, to increase the appearance of the jacket, non-adhesive production methods such as differences in wick attachment methods, shoulder pads, sleeve reinforcing cloth, and sleeve attachment methods should be used.

Comparison of Carbon Emissions between the TBM Method and the NATM Method through LCA Analysis (LCA 분석을 통한 TBM 공법과 NATM 공법의 탄소배출량 비교 연구)

  • Tae-Su Jang;Jae-Soon Khau;Jin-Hyuk Song;Nam-Sun Hwang
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.9-16
    • /
    • 2023
  • To compare the global warming impact of the TBM and NATM method, which are representative tunnel excavation methods, a life cycle assessment was performed for each method. Life cycle assessment should compare the sum of carbon emissions by considering the pre-manufacturing stage, product manufacturing stage, usage stage, and disposal stage. However, access to TBM (Tunnel Boring Machine) manufacturing and disposal data is limited, so I had no choice but to focus on the analysis for the usage stage. In general, carbon emissions during the pre-product manufacturing stage and product manufacturing stage often exceed 90% of carbon emissions throughout the entire process. Therefore, since it is difficult to achieve the analysis goal only by comparing the usage stage, the analysis scope was expanded, and carbon emissions for the process were calculated for the NATM method with access to manufacturing data. As a result of comparing the relative impact on global warming, the carbon emissions of the TBM method were found to be higher than those of the NATM method even though TBM method was only considered for the usage stage. So there it is, the NATM method can be seen as environmentally friendly in the future when considering the impact of climate change (global warming), which has recently attracted attention among environmental impact fields.

The Role of Industrial Clustering and Manufacturing Flexibility in Achieving High Innovation Capability and Operational Performance in Indonesian Manufacturing SMEs

  • Purwanto, Untung Setiyo;Kamaruddin, Shahrul;Mohamad, Norizah
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.236-247
    • /
    • 2015
  • This study aims to examine the effects of industrial clustering and manufacturing flexibility on innovation capability and operational performance. This study follow a survey method to collect data pertaining to the phenomena of industrial clustering, manufacturing flexibility, innovation capability, and operational performance by utilizing a single respondent design. A total of 124 Indonesian manufacturing SMEs are taken to test the proposed theoretical model by utilizing covariance-based structural equations modeling approach. It was found that both industrial clustering and manufacturing flexibility was positively associated with operational performance and innovation capability as well. In addition, innovation capability may account for the effects of industrial clustering and manufacturing flexibility on operational performance. This implies that manufacturing SMEs have to reorient their production and operation perspectives, including agglomerate with other similar or related SMEs to develop and utilize their own resources. The SMEs also need to possess some degree of manufacturing flexibility in respond to the uncertain environment and market changes. In addition, the SMEs should put a greater emphasize to use industrial cluster and manufacturing flexibility benefits to generate innovation capability to achieve high performance.

Shape Optimization for Lightweight of the Metal 3D Printing Based Hybrid Machining Center (금속 적층 기반 하이브리드 머시닝센터의 경량화를 위한 형상 최적화에 관한 연구)

  • Jeong, Won-Young;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.80-85
    • /
    • 2021
  • In the fourth industrial revolution, the demand for metal three-dimensional (3D) printing technology is rapidly increasing. Metal 3D printing is an efficient method for manufacturing products because the method reduces material waste compared to subtractive manufacturing. In addition, products with complex shapes, such as turbine blades, can be easily produced using metal 3D printing because the method offers a high degree of freedom. However, due to the long production time of metal 3D printing, mass production is impossible, and post-processing is necessary due to its low precision. Therefore, it is necessary to develop a new hybrid process that can efficiently process metals and to develop a metal 3D-printing-based hybrid processing system technology to secure high processing precision and manufacture complex shapes. In this study, the structural stability of a metal 3D printer based hybrid machining center was analyzed through structural analysis before its development. In addition, we proposed a design modification that can reduce the weight and increase the stiffness of the hybrid machining center by performing shape lightning based on the structural analysis results.