• Title/Summary/Keyword: manufacturing lead time

Search Result 264, Processing Time 0.033 seconds

Optimization of feed system of base mold for washing machine using CAE (사출성형 CAE를 이용한 세탁기용 Base 성형용 금형의 유동 시스템 최적화)

  • Yoo, Min-ji;Kim, Kyung-A;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The position of the gate is one of the important factors for optimal injection molding. This is because inappropriate gate positions cannot fill the cavity uniformly, which can lead to defects such as contraction. In this study, CAE was performed on hot runner injection molding of the washing machine base and plasticity was compared by changing gate position from existing gate position. A total of two alternatives have been applied to compare the plasticity of the washing machine base according to its optimal gate position. The gate position of the improved molds and the gate position of the current mold is analyzed by injection molding analysis. The results of the fill time, the pressure at V/P switchover, clamping force, and deflection were compared. In washing machine base injection molding, the deflection was reduced by about 3.76% in the improved mold 2. In improved mold 1, the fill time during injection molding was reduced by 3.32% to enable uniform charging, and the clamping force was reduced by 31.24%. We have confirmed that the position of the gate can change the charging pressure and the clamping force and affect the quality and cost savings of the molded product.

Machine Learning Model for Reduction Deformation of Plastic Motor Housing for Automobiles

  • Seong-Yeol Han
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2024
  • The purpose of this paper is to introduce a fusion method that combines the design of experiments (DOE) and machine learning to optimize the bias of plastic products. The study focuses on the plastic motor housing used in automobiles, which is manufactured through plastic injection molding. Achieving optimal molding for the motor housing involves the optimization of various molding conditions, including injection pressure, injection time, holding pressure, mold temperature, and cooling time. Failure to optimize these conditions can lead to increased product deformation. To minimize the deformation of the motor housing, the widely used Taguchi method, which is one of the design of experiment techniques, was employed to identify the injection molding conditions that affect deformation. Machine learning was then applied to various models based on the identified molding conditions. Among the models, the Random Forest model emerged as the most effective in predicting deformation amounts. The validity of the Random Forest model was also confirmed through verification. The verification results demonstrated the excellent prediction accuracy of the trained Random Forest model. By utilizing the validated model, molding conditions that minimize deformation were determined. Implementation of these optimal molding conditions led to a reduction of approximately 5.3% in deformation compared to the conditions before optimization. It is noteworthy that all injection molding outcomes presented in this paper were obtained through robust injection molding simulations, ensuring both research objectivity and speed.

A Study for the Mechanical Properties with Infill Rate in FDM Process to Fabricate the Small IoT Device (소형 IoT 기기 제작을 위한 FDM 프린팅 공정에서의 내부채움에 따른 물성치 변화 연구)

  • Ahn, Il-Hyuk
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.75-80
    • /
    • 2020
  • Recently, the size of the IoT sensor has been decreased and the collecting direction of the IoT sensor for acquiring the data have been changed from 2D to 3D. It makes sensor structure complex. In the fabrication of the complex structure, 3D printing technology has more useful than traditional manufacturing technologies. Among 3D printing technologies, FDM (fused deposition modeling) is a candidate technology to fabricate a small IoT sensor because the price of the machine and the material is cheap. In the FDM process, a 3D shape is made by depositing the melted filament. Recently, the patent of FDM technology is expired and cheat machines are developed based on the open-source. In the FDM process, mechanical properties of a fabricated part is affected by a lots of factors such as the kind of material and process parameters. Among them, infill is affecting the mechanical properties and the production lead time as well. In this work, a new method to optimize the FDM process with the consideration of mechanical property and production lead time was proposed. To verify the method, the fabrications were performed with the different infill rates. The results of tensile tests were analyzed to verify the proposed method.

Analysis of Defective Causes in Real Time and Prediction of Facility Replacement Cycle based on Big Data (빅데이터 기반 실시간 불량품 발생 원인 분석 및 설비 교체주기 예측)

  • Hwang, Seung-Yeon;Kwak, Kyung-Min;Shin, Dong-Jin;Kwak, Kwang-Jin;Rho, Young-J;Park, Kyung-won;Park, Jeong-Min;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.203-212
    • /
    • 2019
  • Along with the recent fourth industrial revolution, the world's manufacturing powerhouses are pushing for national strategies to revive the sluggish manufacturing industry. Moon Jae-in, the government is in accordance with the trend, called 'advancement of science and technology is leading the fourth round of the Industrial Revolution' strategy. Intelligent information technology such as IoT, Cloud, Big Data, Mobile, and AI, which are key technologies that lead the fourth industrial revolution, is promoting the emergence of new industries such as robots and 3D printing and the smarting of existing major manufacturing industries. Advances in technologies such as smart factories have enabled IoT-based sensing technology to measure various data that could not be collected before, and data generated by each process has also exploded. Thus, this paper uses data generators to generate virtual data that can occur in smart factories, and uses them to analyze the cause of the defect in real time and to predict the replacement cycle of the facility.

Effects of Traffic Signals with a Countdown Indicator: Driver's Reaction Time and Subjective Satisfaction in Driving Simulation

  • Chang, Joonho;Jung, Kihyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.459-466
    • /
    • 2017
  • Objective: This study examined two traffic signals with a countdown indicator in terms of driver's reaction time and subjective satisfaction score and their performance was compared with a standard traffic signal in driving simulation. Background: Dilemma zone is created when a traffic light changes at intersections. It often pushes drivers to rush in urgent and premature decision making whether to go or stop and thus induces unnecessary mental load among drivers, which may lead to sudden conflicts with following vehicles at intersections. Method: Forty college students (male: 20, female: 20) participated in this driving simulation study. Three traffic signals were employed: (1) standard traffic signal; (2) countdown-separated signal; and (3) countdown-overlaid signal. The countdown-separated and countdown-overlaid signals were designed to inform drivers of the remaining time of a green light before tuning to an amber light. Reaction times (sec) and satisfaction scores (7-point scale) for the two signals with a countdown indicator were compared with those for the standard traffic signal. Results: Reaction times of the countdown-separated (0.49 sec) and countdown-overlaid (0.43 sec) signals were significantly shorter than that of the standard signal (0.67 sec). Satisfaction scores of the countdown-separated (5.3 point) and countdown-overlaid (5.6 point) signals were greater than that of the standard signal (3.8 point). Lastly, the countdown-overlaid signal showed better performance than the countdown-separated signal, but their differences in reaction time (0.06 sec) and satisfaction score (0.3 point) were small. Conclusion: Traffic signals with a countdown indicator can improve drivers' reaction time and satisfaction score than the standard traffic signal. Application: Traffic signals with a countdown indicator will be useful for reducing the length of dilemma zone at intersections, by allowing drivers to predict the remaining time of a green light.

Effect of Trunk Flexion and Low Extremity Posture on Maximum Holding Time (허리굽힘과 다리자세가 작업지속시간에 미치는 영향에 관한 연구)

  • Lee, Se-Jung;Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.69-74
    • /
    • 2011
  • Despite most of tasks in manufacturing, construction and agriculture, etc., were currently mechanized and automated, manual materials handling still existed in atypical working condition. In case of manual materials handling, repetitive work, inappropriate working posture, excessive force, contact stress might cause overload, which could lead to work-related musculoskeletal disorders and low back pains. On this basis, the goal of this study is to reveal the effects of various lifting postures of trunk angles and lower extremity postures on maximum holding time(MHT). Twenty two subjects were recruited from a university population. The experiment was designed by a combination of three trunk angle ($0^{\circ}$, $20^{\circ}$, $60^{\circ}$) and three lower extremity postures(straight, bent, kneeling). Before experimental trials, subjects performed MVC(maximum voluntary contraction) exertions in three trunk angles ($0^{\circ}$, $20^{\circ}$, $60^{\circ}$) to calculate 30%MVC at designated postures. In each trial, they were required to hold the handheld load(30%MVC) for a designated posture as long as they could. The results of MVC by trunk angles were measured in $0^{\circ}$ > $20^{\circ}$ > $60^{\circ}$ orders, but those of MHT measured in $20^{\circ}$ > $0^{\circ}$ > $60^{\circ}$ orders. These results showed that straight posture is the ideal working posture in work exerted a strong force for a short time, but the ability to work might be improved in the trunk angle $20^{\circ}$ in work required 30%MVC for a long time. Also, results of MVC and MHT by lower extremity postures measured in straight > bent > kneeling orders.

A Method of Applying Work Relationships for a Linear Scheduling Model (선형 공정계획 모델의 작업 관계성 적용 방법)

  • Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.31-39
    • /
    • 2010
  • As the linear scheduling method has been used since the Empire State Building linear schedule in 1929, it is being applied in various fields, such as construction and manufacturing. When addressing concurrent critical paths occurring in a linear construction schedule, empirical researches have stressed resource management, which should be applied for optimizing workflow, ensuring flexible work productivity and continuous resource allocation. However, work relationships have been usually overlooked in making the linear schedule from an existing network schedule. Therefore, this research analyzes the previous researches related to the linear scheduling model, and then proposes a method that can be applied for adopting the relationships of a network schedule to the linear schedule. To this end, this research considers the work relationships occurring in changing a network schedule into a linear schedule, and then confirms the activities movement phenomenon of linear schedule due to workspace change, such as physical floors change. As a result, this research can be used as a basic research in order to develop a system generating a linear schedule from a network schedule.

Comparative Evaluation of Shielding Performance according to the Characteristics of Eco-friendly Shielding Material Tungsten (친환경 차폐재료 텅스텐 특성에 따른 차폐성능 평가)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.129-136
    • /
    • 2021
  • Radiation shields used in medical institutions mainly use lead to manufacture products and fitments. Although lead has excellent processability and economic efficiency, its use is being reduced due to environmental issues when it is disposed of. In addition, when used for a long time, there is a limit to using it as a shielding film, shielding wall, medical device parts, etc. due to cracking and sagging due to gravity. To solve this problem, copper, tin, etc. are used, but tungsten is mostly used because there is a difficulty in the manufacturing process to control the shielding performance. However, it is difficult to compare with other shielding materials because the characteristics according to the type of tungsten are not well presented. Therefore, in this study, a medical radiation shielding sheet was manufactured in the same process using pure tungsten, tungsten carbide, and tungsten oxide, and the particle composition and shielding performance of the sheet cross-section were compared.As a result of comparison, it was found that the shielding performance was excellent in the order of pure tungsten, tungsten carbide, and tungsten oxide.

Export to the USA and Sourcing of Korean Apparel Industry (한국 의류산업의 대미(對美) 수출 현황과 소싱 특성)

  • Baek, Young-Ha;Park, Jae-Ok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.3
    • /
    • pp.462-473
    • /
    • 2008
  • In recent years, Korea's apparel exports to the USA have faced a great threat, as the trade environment around the world has changed continually. The purpose of this study is to analyze the competitive position of Korean apparel exports to the USA, and to enhance export competitiveness by applying to offshore sourcing. The trade data of the Office of Textiles and Apparel(OTEXA) in the U.S. Department of Commerce were selected for inquiry about export competitiveness of apparel products made in Korea. In addition, we targeted members of the Korea Apparel Industry Association among the 500 exporters of clothing items in "The Import and Export Textile Product 2003." A total 70 sheets were analyzed. The results of this study were as follows: 1) Korean apparel exports to USA have decreased by 20-35 percent per year since 2005 under the Free Trade Area, showing that Korean apparel industries have not adapted to the new trade environment. Although Korean apparel exports to USA have indicated a trade surplus from now on, Korean apparel industries should find new ways to overcome this situation, diminishing exports and increasing imports. 2) Korean apparel companies selected more offshore sourcing than domestic sourcing. Also, as Korean apparel companies manufactured apparel products offshore, foreign subcontracting outranked manufacturing in their own foreign plants. When they chose foreign countries to source, they turned mainly to China and Vietnam. Also, they considered the target country's manufacturing price, labor stability, apparel products, quality, lead time, and so on. In order to increase apparel exports, Korean apparel industries should focus more on developing competitively new apparel products, improving the ability of sourcing management, and establishing on-the-spot agencies.

Simulation of Efficient Flow Control for FAB of Semiconductor Manufacturing (반도체 FAB 공정에서의 효율적 흐름제어를 위한 시뮬레이션)

  • 한영신;전동훈
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.407-415
    • /
    • 2000
  • The ultimate goal of flow control in the semiconductor fabrication process, one of the most equipment-intensive and complex manufacturing process, is to reduce lead time and work in process. In this paper, we propose stand alone layout in the form of job shop using group technology to improve the Productivity and eliminate the inefficiency in FMS (flexible manufacture system). The performance of stand alone layout and in-line layout are analyzed and compared while varying number of device variable chanties. The analysis of in-line layout is obtained by examining its adoption in the memory products of semiconductor factory. The comparison is performed through simulation using ProSys; a window 95 based discrete system simulation software, as a tool for comparing performance of two proposed layouts. The comparison demonstrates that when the number of device variable change is small, in-line layout is more efficient in terms of production Quantity. However, as the number of device variable change is more than 14 times, stand alone layout prevails over in-line layout.

  • PDF