1 |
S. C. Kim. (2021). Analysis of Shielding Performance of Radiation-Shielding Materials According to Particle Size and Clustering Effects. Applied Sciences, 11(9), 1-10. DOI : 10.3390/app11094010
DOI
|
2 |
U. N. S. C. o. t. E. o. A. Radiation and UNSCEAR., Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly with scientific annexes: Vol I Sources (Report & Scientific annexes AE). (United Nations, 2000).
|
3 |
S. C. Kim & J. S. Son. (2021). Double-layered fiber for lightweight flexible clothing providing shielding from low-dose natural radiation. Scientific Reports, 11(1), 1-9. DOI : 10.1038/s41598-021-83272-3
DOI
|
4 |
S. C. Kim. (2021). Construction of a Medical Radiation-Shielding Environment by Analyzing the Weaving Characteristics and Shielding Performance of Shielding Fibers Using X-ray-Impermeable Materials. Applied Science, 11(4), 1-12. DOI : 10.3390/app11041705
DOI
|
5 |
S. C. Kim. (2021). Analysis of Radiation Fusion Shielding Performance of Ytterbium Oxide, a Radiation Impermeable Substance. Journal of the Korea Convergence Society, 4(12), 87-94. DOI : 10.15207/JKCS.2021.12.4.087
DOI
|
6 |
N. J. AbuAlRoos, N. A. B. Amin & R. Zainon. (2020). Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Physica Medica, 78, 48-57. DOI : 10.1016/j.ejmp.2020.08.017
DOI
|
7 |
M. K. Kalra et al. (2004). Strategies for CT Radiation Dose Optimization. Radiology. 230(3), 619-628. DOI : 10.1148/radiol.2303021726
DOI
|
8 |
C. Hohl et al. (2009). Radiation Dose Reduction to Breast and Thyroid During MDCT: Effectiveness of an In-Plane Bismuth Shield. Acta Radiologica. 47(6), 562-567. DOI : 10.1080/02841850600702150
DOI
|
9 |
A. Moitra, S. H. Kim, S. G. Kim, S. J. Park, R. M. German & M. F. Horstemeyer. (2010). Investigation on sintering mechanism of nanoscale tungsten powder based on atomistic simulation. Acta Materialia, 58(11), 3939-3951. DOI : 10.1016/j.actamat.2010.03.033
DOI
|
10 |
S. C. Kim. (2020). Prediction of Shielding Performance by Thickness by Comparing the Single and Laminated Structures of Lead-free Radiation Fusion Shielding Sheets, Journal of the Korea Convergence Society, 12(1), 105-110. DOI : 10.15207/JKCS.2021.12.1.105
DOI
|
11 |
V. Gavrish, N. Cherkashina & T. Chayka. (2020). Investigations of the influence of tungsten carbide and tungsten oxide nanopowders on the radiation protection properties of cement matrix-based composite materials. Journal of Physics: Conference Series, 1652, 1-6. DOI : 10.1088/1742-6596/1652/1/012008
DOI
|
12 |
M. S. Al-Buriahi, C. Sriwunkum, H. Arslan, Tonguc. Baris. T & M. A. Bourham. (2020). Investigation of barium borate glasses for radiation shielding applications. Applied Physics A. 126(1), 1-9. DOI : 10.1007/s00339-019-3254-9
DOI
|
13 |
K. Yue et al. (2009). A new lead-free radiation shielding material for radiotherapy. Radiation Protection Dosimetry, 133(4), 256-260. DOI : 10.1093/rpd/ncp053
DOI
|
14 |
S. C. Kim. (2020). Effects of laminated structure and fiber coating on tensile strength of radiation shielding sheet, Journal of the Korea Convergence Society, 11(6), 83-88. DOI : 10.15207/JKCS.2020.11.6.000
DOI
|
15 |
J. M. Shoag et al. (2020). Lead poisoning risk assessment of radiology workers using lead shields. Arch Environ Occup Health. 75(1), 60-64. DOI : 10.1080/19338244.2018.1553843
DOI
|
16 |
K. Lambert & T. McKeon. (2001). Inspection of lead aprons: criteria for rejection. Health physics. 80(5), 67-69. DOI : 10.1097/00004032-200105001-00008
DOI
|
17 |
M. Mastuda & T. Suzuki. (2016). Evaluation of lead aprons and their maintenance and management at our hospital. J Anesth. 30(3), 518-521. DOI : 10.1007/s00540-016-2140-2
DOI
|
18 |
S. C. Kim. (2018). Physical Properties of Medical Radiation Shielding Sheet According to Shielding Materials Fusion and Resin Modifier Properties. Journal of the Korea Convergence Society, 9(12), 99-106. DOI : 10.15207/JKCS.2018.9.12.099
DOI
|
19 |
H. Warren-Forward et al. (2007). A comparison of dose savings of lead and lightweight aprons for shielding of 99 m-Technetium radiation. Radiat. Prot. Dosimetry, 124(2), 89-96. DOI : 10.1093/rpd/ncm176
DOI
|
20 |
J. H. Yun, J. Hou, W. G. Jang, J. H. Kim & H. S. Byun. (2019). Preparation and Optimization of Composition of Medical X-ray Shielding Sheet Using Tungsten. Polymer(Korea), 43(3), 346-350. DOI : 10.7317/pk.2019.43.3.346
DOI
|
21 |
R. Li, Y. Gu, Y. Wang, Z. Yang, M. Li. & Z. Zhang. (2017). Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Materials Research Express, 4(3), 1-19. DOI : 10.1088/2053-1591/aa6651
DOI
|
22 |
E. Sakar, O. F. Ozpolat, B. Alim, M. I. Sayyed & M. Kurudirek. (2020). Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem, 166, 1-31. DOI : 10.1016/j.radphyschem.2019.108496
DOI
|
23 |
N. J. AbuAlRoos, N. A. B. Amin & R. Zainon. (2019). Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry. 165, 1-7. DOI : 10.1016/j.radphyschem.2019.108439
DOI
|