• Title/Summary/Keyword: manufacturing defect

Search Result 406, Processing Time 0.026 seconds

A Prediction of Chip Quality using OPTICS (Ordering Points to Identify the Clustering Structure)-based Feature Extraction at the Cell Level (셀 레벨에서의 OPTICS 기반 특질 추출을 이용한 칩 품질 예측)

  • Kim, Ki Hyun;Baek, Jun Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.257-266
    • /
    • 2014
  • The semiconductor manufacturing industry is managed by a number of parameters from the FAB which is the initial step of production to package test which is the final step of production. Various methods for prediction for the quality and yield are required to reduce the production costs caused by a complicated manufacturing process. In order to increase the accuracy of quality prediction, we have to extract the significant features from the large amount of data. In this study, we propose the method for extracting feature from the cell level data of probe test process using OPTICS which is one of the density-based clustering to improve the prediction accuracy of the quality of the assembled chips that will be placed in a package test. Two features extracted by using OPTICS are used as input variables of quality prediction model because of having position information of the cell defect. The package test progress for chips classified to the correct quality grade by performing the improved prediction method is expected to bring the effect of reducing production costs.

Reliability Evaluation of a Motor Core Applied Ultrasound Infrared Thermography Technique (초음파 적외선열화상 기법을 적용한 모터 코어의 신뢰성 평가)

  • Jung, Yoon-Soo;Roh, Chi-Sung;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.60-66
    • /
    • 2016
  • This study used an ultrasound infrared thermography technique to detect issues in the motor core of typical power equipment. The current defect inspection method of the motor core is often incomplete (due to the limits of visual inspection) and thus the reliability of the motor core is reduced. Therefore, in this study, experiments were carried out to increase the reliability of the test by using an ultrasonic infrared thermal non-destructive inspection method to image the motor core. The ambient temperature of the experimental system was maintained at $25^{\circ}C$. Experiments were carried out to examine a damaged motor core and a defect-free motor core. Experimental results confirm the technique clearly detected defects in the motor core, thereby confirming the possibility of using this technique in the field.

Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery

  • Salah, Muhja;Tayebi, Lobat;Moharamzadeh, Keyvan;Naini, Farhad B.
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.18.1-18.9
    • /
    • 2020
  • Background: Bone grafting has been considered the gold standard for hard tissue reconstructive surgery and is widely used for large mandibular defect reconstruction. However, the midface encompasses delicate structures that are surrounded by a complex bone architecture, which makes bone grafting using traditional methods very challenging. Three-dimensional (3D) bioprinting is a developing technology that is derived from the evolution of additive manufacturing. It enables precise development of a scaffold from different available biomaterials that mimic the shape, size, and dimension of a defect without relying only on the surgeon's skills and capabilities, and subsequently, may enhance surgical outcomes and, in turn, patient satisfaction and quality of life. Review: This review summarizes different biomaterial classes that can be used in 3D bioprinters as bioinks to fabricate bone scaffolds, including polymers, bioceramics, and composites. It also describes the advantages and limitations of the three currently used 3D bioprinting technologies: inkjet bioprinting, micro-extrusion, and laserassisted bioprinting. Conclusions: Although 3D bioprinting technology is still in its infancy and requires further development and optimization both in biomaterials and techniques, it offers great promise and potential for facial reconstruction with improved outcome.

A Gating System Design to Reduce the Gas Porosity for Die Casting Mobile Device (다이캐스팅 모바일 기기의 기공결함 감소를 위한 유동구조 설계)

  • Jang, Jeong Hui;Kim, Jun Hyung;Han, Chul Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2021
  • Usually, the die-cast components used in small mobile devices require finishing processes, such as computer numerically controlled coating. In such cases, porosity is the most important defect. The shape of the molten aluminum that passes through the runner and gate in a mold is the one of the factors that influences gas porosity. To define the spurt index, which numerically indicates the shape of molten aluminum after the gate, Reynolds number and Ohnesorge number are used. Before die fabrication, computer-aided engineering analysis is performed to optimize the filling pattern. Finally, X-ray and surface inspection are performed after casting and machining to evaluate how the spurt index affects porosity and other product parameters. Based on the results obtained herein, a new gating system design process is suggested.

Abnormal Detection in 3D-NAND Dielectrics Deposition Equipment Using Photo Diagnostic Sensor

  • Kang, Dae Won;Baek, Jae Keun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.74-84
    • /
    • 2022
  • As the semiconductor industry develops, the difficulty of newly required process technology becomes difficult, and the importance of production yield and product reliability increases. As an effort to minimize yield loss in the manufacturing process, interests in the process defect process for facility diagnosis and defect identification are continuously increasing. This research observed the plasma condition changes in the multi oxide/nitride layer deposition (MOLD) process, which is one of the 3D-NAND manufacturing processes through optical emission spectroscopy (OES) and monitored the result of whether the change in plasma characteristics generated in repeated deposition of oxide film and nitride film could directly affect the film. Based on these results, it was confirmed that if a change over a certain period occurs, a change in the plasma characteristics was detected. The change may affect the quality of oxide film, such as the film thickness as well as the interfacial surface roughness when the oxide and nitride thin film deposited by plasma enhenced chemical vapor deposition (PECVD) method.

The Manufacture of Custom Made 3D Titanium Implant for Skull Reconstruction

  • Cho, Hyung Rok;Yun, In Sik;Shim, Kyu Won;Roh, Tai Suk;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.13-15
    • /
    • 2014
  • Nowadays, with advanced 3D printing techniques, the custom-made implant can be manufactured for the patient. Especially in skull reconstruction, it is difficult to design the implant due to complicated geometry. In large defect, an autograft is inappropriate to cover the defect due to donor morbidity. We present the process of manufacturing the 3D custom-made implant for skull reconstruction. There was one patient with skull defect repaired using custom-made 3D titanium implant in the plastic and reconstructive surgery department. The patient had defect of the left parieto-temporal area after craniectomy due to traumatic subdural hematoma. Custom-made 3D titanium implants were manufactured by Medyssey Co., Ltd. using 3D CT data, Mimics software and an EBM (Electron Beam Melting) machine. The engineer and surgeon reviewed several different designs and simulated a mock surgery on 3D skull model. During the operation, the custom-made implant was fit to the defect properly without dead space. The operative site healed without any specific complications. In skull reconstruction, autograft has been the treatment of choice. However, it is not always available and depends on the size of defect and donor morbidity. As 3D printing technique has been advanced, it is useful to manufacture custom-made implant for skull reconstruction.

A Case Study for Estimating the Defect Rate of PLC Using Sampling Inspection and Improving the Cause of Defects (샘플링검사를 이용한 PLC의 불량률 추정 및 불량원인 개선 사례연구)

  • Moon, In-Sun;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.128-135
    • /
    • 2021
  • WDM(Wavelength Division Multiplexing) is called a wavelength division multiplexing optical transmission method and is a next-generation optical transmission technology. Case company F has recently developed and sold PLC(Planar Lightwave Circuit), a key element necessary for WDM system production. Although Chinese processing companies are being used as a global outsourcing strategy to increase price competitiveness by lowering manufacturing unit prices, the average defect rate of products manufactured by Chinese processing companies is more than 50%, causing many problems. However, Chinese processing companies are trying to avoid responsibility, saying that the cause of the defect is the defective PLC Wafer provided by Company F. Therefore, in this study, the responsibility of the PLC defect is clearly identified through estimating the defect rate of PLC using the sampling inspection method, and the improvement plan for each cause of the PLC defect for PLC yeild improvement is proposed. The result of this research will greatly contribute to eliminating the controversy over providing the cause of defects between global outsourcing companies and the head office. In addition, it is expected to form a partnership with Company F and a Chinese processing company, which will serve as a cornerstone for successful global outsourcing. In the future, it is necessary to increase the reliability of the PLC yield calculation by extracting more precisely the number of defects.

Morphological and Chemical Analysis of Various Disposable Acupuncture Needles Used in South Korea

  • Dong Yong, Park;JiYoon, Ahn;Hyeon Jeong, Park;Doo Suk, Lee;Dae-Hyun, Jo;Jonghoon, Kim;Choulmin, Kim;Heebum, Chung;Ji Hye, Hwang
    • Journal of Pharmacopuncture
    • /
    • v.25 no.4
    • /
    • pp.382-389
    • /
    • 2022
  • Objectives: The Korean Industrial Standard (KS) for sterile acupuncture needles was established in 2009 based on research on the quality control of acupuncture needles. We aimed to determine the quality of acupuncture needles available in South Korea in 2021 by examining their surface condition and chemical composition using field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Methods: In South Korea, there are 23 brands of acupuncture needles, and we examined 10-15 needles from each brand, resulting in a total of 285 needles. The microstructures of the needles were assessed by SEM. Using SEM images, we evaluated the acupuncture needle tips for the following defects/aspects: scratches, lumps, detached coating, bent tip, and tip sharpness. EDS was used to determine the chemical composition of the selected acupuncture needles. Results: Overall, 88.4% of 285 needles were found to have at least one type of abnormality. The most frequently observed abnormalities were scratches and dents on the surface (68.1%), followed by detached coating (63.2%), and lumps (61.8%); blunt tips were observed in about 24% of them. Of 252 needles with at least one defect, 86.9% had two or more types of defects. The ratio of the number of needles with any defect to that of needles without any defect varied among brands, ranging from 50% to 100%. Regarding foreign materials, higher proportions of Si and O were observed on the needles, indicating incomplete or detached silicone coating. Conclusion: The quality of acupuncture needles varied among brands, suggesting that further improvements can be made through various inspection methods.

Defect Inspection of the Pixels in OLED Type Display Device by Image Processing (화상처리를 이용한 OLED 디스플레이의 픽셀 불량 검사에 관한 연구)

  • Park, Kyoung-Seok;Shin, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.25-31
    • /
    • 2009
  • The image processing methods are widely used in many industrial fields to detect defections in inspection devices. In this study an image processing method was conducted for the detection of abnormal pixels in a OLED(Organic Light Emitting Diode) type panel which is used for small size displays. The display quality of an OLED device is dependent on the pixel formation quality. So, among the so many pixels, to find out the faulty pixels is very important task in manufacturing processing or inspection division. We used a line scanning type BW(Black & White) camera which has very high resolution characteristics to acquire an image of display pixel patterns. And the various faulty cases in pixel abnormal patterns are considered to detect abnormal pixels. From the results of the research, the normal BW pixel image could be restored to its original color pixel.

  • PDF

A Study on the Process Sequence Design in Metal Forming including Deep Drawing (디프드로잉이 포함된 소성가공의 공정설계에 관한 연구)

  • 황병복;임중연;이호용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.107-117
    • /
    • 1994
  • A design methodology is applied for manufacturing a disk-brake piston component and a washing machine container. The design criteria are the limit drawing ratio and the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic and elastic-plastic FEM have been applied to simulate both of the conventional manufacturing processes, respectively, which include deep drawing and forging process. Simulations of one stage process from a selected stock to the final product shape are performed for generating information on additional requirements for metal flow. The best manufacturing processes are selected, which is using a hemispherical punch in the deep drawing process for both disk-brake piston component and washing machine container.

  • PDF