• 제목/요약/키워드: manganese peroxidase

검색결과 95건 처리시간 0.027초

Screening of Biodegradable Function of Indigenous Ligno-degrading Mushroom Using Dyes

  • Jang, Kab-Yeul;Cho, Soo-Muk;Seok, Soon-Ja;Kong, Won-Sik;Kim, Gyu-Hyun;Sung, Jae-Mo
    • Mycobiology
    • /
    • 제37권1호
    • /
    • pp.53-61
    • /
    • 2009
  • The process of biodegradation in lingo-cellulosic materials is critically relevant to biospheric carbon. The study of this natural process has largely involved laboratory investigations, focused primarily on the biodegradation and recycling of agricultural by-products, generally using basidiomycetes species. In order to collect super white rot fungi and evaluate its ability to degrade lingo-cellulosic material, 35 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye. In the laccase enzymatic analysis chemical test, 33 white rot fungi and 2 brown rot fungi were identified. The degradation ability of polycyclic aromatic hydrocarbons (PAHs) according to the utilized environmental conditions was higher in the mushrooms grown in dead trees and fallen leaves than in the mushrooms grown in humus soil and livestock manure. Using Poly-R 478 dye to assess the PAH-degradation activity of the identified strains, four strains, including Agrocybe pediades, were selected. The activities of laccase, MnP, and Lip of the four strains with PAH-degrading ability were highest in Pleurotus incarnates. 87 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye on solid media. Using Poly-R 478 dye to assess the PAHdegrading activity of the identified strains, it was determined that MKACC 51632 and 52492 strains evidenced superior activity in static and shaken liquid cultures. Subsequent screening on plates containing the polymeric dye poly R-478, the decolorization of which is correlated with lignin degradation, resulted in the selection of a strain of Coriolus versicolor, MKACC52492, for further study, primarily due to its rapid growth rate and profound ability to decolorize poly R-478 on solid media. Considering our findings using Poly-R 478 dye to evaluate the PAH-degrading activity of the identified strains, Coriolus versicolor, MKACC 52492 was selected as a favorable strain. Coriolus versicolor, which was collected from Mt. Yeogi in Suwon, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP).

흰구름버섯에 의한 방향족 염료와 비스페놀 A의 분해 (Biodegradation of aromatic dyes and bisphenol A by Trametes hirsuta (Wulfen) Pilat)

  • 임경환;백승아;최재혁;이태수
    • 한국버섯학회지
    • /
    • 제17권4호
    • /
    • pp.247-254
    • /
    • 2019
  • 흰구름버섯 (Trametes hirsuta)의 균사체는 CR, CV, RBBR 등 방향족 염료가 함유된 고체와 액체 배지에서 이들 염료를 효과적으로 탈색하였으나 MB의 탈색은 저조하였다. 각각 CR, MB, CV 및 RBBR 등 4종류의 염료가 함유된 액체배지에서 흰구름버섯의 균사체를 10일 간 배양했을 때 laccase, LiP, MnP 등 세 종류의 효소를 모두 생산하였으며 이들 효소 중 laccase의 활성도가 가장 높았으며 LiP와 MnP의 활성도laccase에 비해 낮았다. 따라서 흰구름버섯 균사체에 의한 방향족 염료의 탈색에는 laccase가 주로 사용되고 LiP나 MnP는 보조적인 역할을 하는 것으로 사료된다. 또한 비스페놀 A가 0, 25, 50, 100, 200 ppm의 농도로 함유된 PDA 배지에 균사체를 접종하여 배양한 결과 비스페놀 A의 농도가 증가함에 따라 균사체의 생장은 농도 의존적으로 저해되는 것으로 나타났다. 또한 비스페놀 A가 100 ppm 함유된 YMG 액체배지에 균사체를 접종하고 비스페놀 A의 분해율을 측정한 결과 배양 12시간 후 72.3%, 배양 24시간 후 95.3%, 그리고 배양 36시간 후에는 100% 분해된 것으로 나타났다. 따라서 본 연구 결과는 우리나라의 산업 활동 과정에서 생산되고 자연계로 배출되어 생물체에 큰 피해를 주는 합성염료와 내분비계 장애물질인 비스페놀 A를 친환경적으로 제거할 수 있는 기술의 개발에 도움이 될 수 있을 것으로 사료된다.

Influence of Temperature on the Bacterial Community in Substrate and Extracellular Enzyme Activity of Auricularia cornea

  • Zhang, Xiaoping;Zhang, Bo;Miao, Renyun;Zhou, Jie;Ye, Lei;Jia, Dinghong;Peng, Weihong;Yan, Lijuan;Zhang, Xiaoping;Tan, Wei;Li, Xiaolin
    • Mycobiology
    • /
    • 제46권3호
    • /
    • pp.224-235
    • /
    • 2018
  • Temperature is an important environmental factor that can greatly influence the cultivation of Auricularia cornea. In this study, lignin peroxidase, laccase, manganese peroxidase, and cellulose in A. cornea fruiting bodies were tested under five different temperatures ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$, $35^{\circ}C$, and $40^{\circ}C$) in three different culture periods (10 days, 20 days and 30 days). In addition, the V4 region of bacterial 16S rRNA genes in the substrate of A. cornea cultivated for 30 days at different temperatures were sequenced using next-generation sequencing technology to explore the structure and diversity of bacterial communities in the substrate. Temperature and culture days had a significant effect on the activities of the four enzymes, and changes in activity were not synchronized with changes in temperature and culture days. Overall, we obtained 487,694 sequences from 15 samples and assigned them to 16 bacterial phyla. Bacterial community composition and structure in the substrate changed when the temperature was above $35^{\circ}C$. The relative abundances of some bacteria were significantly affected by temperature. A total of 35 genera at five temperatures in the substrate were correlated, and 41 functional pathways were predicted in the study. Bacterial genes associated with the membrane transport pathway had the highest average abundance (16.16%), and this increased at $35^{\circ}C$ and $40^{\circ}C$. Generally, different temperatures had impacts on the physiological activity of A. cornea and the bacterial community in the substrate; therefore, the data presented herein should facilitate cultivation of A. cornea.

Screening Differential Expressions of Defense-related Responses in Cold-treated 'Kyoho' and 'Campbell Early' Grapevines

  • Ahn, Soon Young;Kim, Seon Ae;Han, Jae Hyun;Kim, Seung Heui;Yun, Hae Keun
    • 원예과학기술지
    • /
    • 제31권3호
    • /
    • pp.275-281
    • /
    • 2013
  • Low temperature is one of the major environmental factors that affect productivity including reduced growth and budding of vines, and changes of metabolic processes in grape (Vitis spp.). To screen the specific expression of abiotic stress-related genes against cold treatment in 'Kyoho' and 'Campbell Early' grapevines, expression of various defense-related genes was investigated by RT-PCR and real-time PCR. Among the 67 genes analyzed by RT-PCR and real-time PCR, 17 and 16 types of cDNA were up-regulated, while 5 and 6 types were down-regulated in cold-treated 'Kyoho' and 'Campbell Early' grapevines, respectively. Genes encoding carotene (Cart3564 and Cart4472), chalcone isomerase (CHI), cytochrome P450 (CYP), flavonol synthase (FLS), endo-${\beta}$-glucanase precursor (Glu), glutathione peroxidase (GPX), glutathione-S-transferase (GST), leucine-rich repeats (LRR), manganese superoxide dismutase (Mn-SOD), phenylalanine ammonia lyase (PAL), polygalacturonase-inhibiting protein (PGIP), proline rich protein 2 (PRP2), small heat shock protein (sHSP), temperature induced lipocalin (TIL), and thaumatin-like protein (TLP) were up-regulated, while those encoding CBF like transcription factor (CBF1), chitinase-like protein (CLP), cold induced protein (CIP), glycerol-3-phosphate acyltransferase (GPAT), and mitogen-activated protein kinase (MAPK) were down-regulated by low temperature treatment in both in 'Kyoho' and 'Campbell Early'.

Mycelial response and ligninolytic enzyme production during interspecific interaction of wood-rotting fungi

  • Lee, Kab-Yeon;Park, Seur-Kee;Park, In-Hyeop;Kim, Joon-Sun;Park, Moon-Su;Jung, Hyun-Chae
    • 한국버섯학회지
    • /
    • 제15권4호
    • /
    • pp.168-177
    • /
    • 2017
  • To evaluate effects of ligninolytic enzyme type on the mycelial response and ligninolytic enzyme production during interspecific interactions among wood-rotting fungi, 4 fungal strains, Trichophyton rubrum LKY-7, Trichophyton rubrum LSK-27, Pycnoporus cinnabarinus, and Trichoderma viride, were selected. Regarding ligninolytic enzyme production, LKY-7 secreted laccase and manganese peroxidase (MnP), P. cinnabarinus secreted only laccase, and LSK-27 secreted only MnP in glucose-peptone medium, while T. viride did not produce any ligninolytic enzymes. In the co-culture of LKY-7 with P. cinnabarinus, the formation of aerial mycelium was observed and the enhancement of laccase activity owing to interspecific interaction appeared to be very low. In the co-culture of LKY-7 and P. cinnabarinus with LSK-27, a hypha-free clear zone was observed, which resulted in deadlock, and increased laccase or MnP activity was detected at the interaction zone. The interaction responses of LKY-7, P. cinnabarinus, and LSK-27 with T. viride were characterized by the formation of mycelial barrages along the interface. As mycelial barrages were observed at the T. viride territory and no brownish pigment was observed in the mycelial barrages, it is suggested that laccase and MnP are released as part of an offensive response, not as a defensive response. The co-culture of P. cinnabarinus with T. viride lead to the highest enhancement in laccase activity, yielding more than 14-fold increase in laccase activity with respect to the mono-culture of P. cinnabarinus. MnP activities secreted by LKY-7 or LSK-27 was generally low in interspecific interactions.

Estrogenic Reduction of Styrene Monomer Degraded by Phanerochaete chrysosporium KFRI 20742

  • Lee Jae-Won;Lee Soo-Min;Hong Eui-Ju;Jeung Eui-Bae;Kang Ha-Young;Kim Myung-Kil;Choi In-Gyu
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.177-184
    • /
    • 2006
  • The characteristic biodegradation of monomeric styrene by Phanerochaete chrysosporium KFRI 20742, Trametes versicolor KFRI 20251 and Daldinia concentrica KFRI 40-1 was carried out to examine the resistance, its degradation efficiency and metabolites analysis. The estrogenic reduction effect of styrene by the fungi was also evaluated. The mycelium growth of fungi differentiated depending on the concentration levels of styrene. Additionally P. chrysosporium KFRI 20742 showed superior mycelium growth at less than 200 mg/l, while D. concentrica KFRI 40-1 was more than 200 mg/l. The degradation efficiency reached 99 % during one day of incubation for all the fungi. Both manganese-dependent peroxidase and laccase activities in liquid medium were the highest at the initial stage of incubation, whereas the lowest was after the addition of styrene. However, both activities were gradually recovered after. The major metabolites of styrene by P. chrysosporium KFRI 20742 were 2-phenyl ethanol, benzoic acid, cyclohexadiene-1,4-dione, butanol and succinic acid. From one to seven days of incubating the fungi, the expression of pS2 mRNA widely known as an estrogen response gene was decreased down to the level of baseline after one day. Also, the estrogenic effect of styrene completely disappeared after treatment with supernatant of P. chrysosporium KFRI 20742 from one week of culture down to the levels of vehicle.

Beta-carotene prevents the spermatogenic disorders induced by exogenous scrotal hyperthermia through modulations of oxidative stress, apoptosis, and androgen biosynthesis in mice

  • Yon, Jung-Min;Kim, Jae Seung;Lin, Chunmei;Park, Seul Gi;Gwon, Lee Wha;Lee, Jong-Geol;Baek, In-Jeoung;Nahm, Sang-Seop;Nam, Sang-Yoon
    • 대한수의학회지
    • /
    • 제59권2호
    • /
    • pp.59-67
    • /
    • 2019
  • We investigated whether ${\beta}$-carotene (${\beta}-CA$) or ellagic acid (EA), originating from various fruits and vegetables, has a preventive effect against male infertility induced by exogenous scrotal hyperthermia. ICR adult mice were intraperitoneally treated with 10 mg/kg of ${\beta}-CA$ or EA daily for 13 days consecutively. During this time, mice were subjected to transient scrotal heat stress in a water bath at $43^{\circ}C$ for 20 min on day 7, and their testes and blood were obtained on day 14 for histopathologic and biochemical analyses. Heat stress induced significant testicular weight reduction, germ cell loss and degeneration, as well as abnormal localization of phospholipid hydroperoxide glutathione peroxidase (PHGPx) and manganese superoxide dismutase (MnSOD) in spermatogenic and Leydig cells. Heat stress also altered the levels of oxidative stress (lipid peroxidation, SOD activity, and PHGPx, MnSOD, and $HIF-1{\alpha}$ mRNAs), apoptosis (Bax, Bcl-xL, caspase 3, $NF-{\kappa}B$, and $TGF-{\beta}1$ mRNAs), and androgen biosynthesis (serological testosterone concentration and $3{\beta}$-hydroxysteroid dehydrogenase mRNA) in testes. These changes were all improved significantly by ${\beta}-CA$ treatment, but only slightly improved by EA treatment. These findings indicate that ${\beta}-CA$, through modulations of oxidative stress, apoptosis, and androgen biosynthesis, is a potent preventive agent against testicular injuries induced by scrotal hyperthermia.

Mitochondrial oxidative damage by co-exposure to bisphenol A and acetaminophen in rat testes and its amelioration by melatonin

  • Hina Rashid;Mohammad Suhail Akhter;Saeed Alshahrani;Marwa Qadri;Yousra Nomier;Maryam Sageer;Andleeb Khan;Mohammad F. Alam;Tarique Anwer;Razan Ayoub;Rana J. H. Bahkali
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권1호
    • /
    • pp.26-33
    • /
    • 2023
  • Objective: Human exposure to multiple xenobiotics, over various developmental windows, results in adverse health effects arising from these concomitant exposures. Humans are widely exposed to bisphenol A, and acetaminophen is the most commonly used over-the-counter drug worldwide. Bisphenol A is a well-recognized male reproductive toxicant, and increasing evidence suggests that acetaminophen is also detrimental to the male reproductive system. The recent recognition of male reproductive system dysfunction in conditions of suboptimal reproductive outcomes makes it crucial to investigate the contributions of toxicant exposures to infertility and sub-fertility. We aimed to identify toxicity in the male reproductive system at the mitochondrial level in response to co-exposure to bisphenol A and acetaminophen, and we investigated whether melatonin ameliorated this toxicity. Methods: Male Wistar rats were divided into six groups (n=10 each): a control group and groups that received melatonin, bisphenol A, acetaminophen, bisphenol A and acetaminophen, and bisphenol A and acetaminophen with melatonin treatment. Results: Significantly higher lipid peroxidation was observed in the testicular mitochondria and sperm in the treatment groups than in the control group. Levels of glutathione and the activities of catalase, glutathione peroxidase, glutathione reductase, and manganese superoxide dismutase decreased significantly in response to the toxicant treatments. Likewise, the toxicant treatments significantly decreased the sperm count and motility, while significantly increasing sperm mortality. Melatonin mitigated the adverse effects of bisphenol A and acetaminophen. Conclusion: Co-exposure to bisphenol A and acetaminophen elevated oxidative stress in the testicular mitochondria, and this effect was alleviated by melatonin.

적혈구의 Manganese Superoxide Dismutase 활성은 경주마의 훈련강도를 나타낸다 (Erythrocyte Manganese Superoxide Dismutase Activity Indicates Training Intensity for Racing Horses)

  • 최준영;박인경;임진택;고태송
    • Journal of Animal Science and Technology
    • /
    • 제50권4호
    • /
    • pp.573-580
    • /
    • 2008
  • 적혈구는 산소를 운반하는 세포이므로 본 연구는 마필의 훈련과정에 적혈구내 SOD 활성을 포함한 혈액내 항산화 효소계의 활성변화와 상호작용이 있는지 조사하였다. 마무리 훈련중인 경주 후보마 6두, 21월령, 체중 474kg~509kg을 2001년 9월 24일부터 11월 13일 경주후보 발주 검사시 까지 7주의 훈련기간 조사하였다. 마필에서 10월 1일, 10월 16일, 10월 30일, 및 11월 6일 네 번 각각 채혈되었고, 아침 훈련후 약 3시간의 휴식후 일정시간에 마필이 스트레스를 느끼지 않게 매우 조심하여 헤파린 처리 Vacutainer로 약 5~10mL가 채혈 되었다. 혈액은 적혈구의 MnSOD와 CuZnSOD의 활성, 혈장의 Ceruloplasmin 활성과 그리고 혈장의 과산화물과 과산화물 분해효소 활성 및 포도당과 젖산의 농도 측정에 사용되었다. 훈련기간의 경과에 따라, 마필 적혈구의 MnSOD 활성과 혈장의 과산화물 수준은 점차 유의하게 높아지고, CuZnSOD 활성과 혈장의 Ceruloplasmin과 과산화물 분해효소의 활성은 점차 낮아졌다. 마필의 계산된 산소 소비량의 증가에 따라 MnSOD 활성은 직선적으로 증가하나(r=650, n=32) CuZnSOD 활성은 감소하였다. 그리고 적혈구의 MnSOD 활성은 혈장의 과산화물 함량과 양의 상관관계(r=616, n=48)를 그리고 혈장 젖산농도와 부의 상관관계를 나타내었다. 본 성적은 훈련량이 많아짐에 따라 과산화물은 축적되나, 적혈구의 MnSOD 활성이 높아지는 것은 혈액의 항산화계와 산화계의 균형을 위한 적응을 나타내고 있다. 적혈구의 SOD 활성과 혈장의 과산화물함량은 혈장의 젖산농도와 함께 마필의 훈련정도 평가의 지표로 사용할 수 있다는 것을 보였다.

Expression Pattern of Antioxidant Enzymes Genes in the Ventral Prostates of Rats Exposed to Procymidone and/or Testosterone after Castration

  • Lee, Jong-Geol;Yon, Jung-Min;Jung, Ki-Youn;Lin, Chunmei;Jung, A-Young;Lee, Beom-Jun;Yun, Young-Won;Nam, Sang-Yoon
    • 한국수정란이식학회지
    • /
    • 제26권4호
    • /
    • pp.265-270
    • /
    • 2011
  • Procymidone is a fungicide with anti-androgenic properties widely used to protect fruits from fungal infection, which induces an excessive reactive oxygen species production in male reproductive organs. In this study, to clarify whether procymidone affect the cellular antioxidant system of prostate at onset of puberty, gene expression patterns of the representative antioxidant enzymes such as cytoplasmic glutathione peroxidase (GPx1), phospholipid hydroperoxide GPx (PHGPx), selenoprotein P (SePP), cytoplasmic copper/zinc superoxide dismutase (SOD1), and manganese SOD (SOD2) were investigated in the rat ventral prostates exposed to procymidone using real-time RT-PCR analyses. Seven-week-old Sprague-Dawley rats castrated at 6 weeks old were treated with procymidone (25, 50, or 100 mg/kg per day) orally for 7 consecutive days after testosterone propionate (0.4 mg/kg per day) administration by subcutaneous injection. As compared to normal control animals, GPx1 mRNA expression in prostates significantly increased by the administration with TP and/or procymidone. However, PHGPx and SOD1 mRNA levels significanatly decreased by over 25 mg/kg of procymidone treatment and SePP and SOD2 mRNA levels was significanatly reduced by over 50 mg/kg of procymidone treatment. These findings indicate that procymidone may affect the antioxidant system of prostatic cells in up-regulation mode of GPx1, but in down-regulation modes of PHGPx, SePP, SOD1, and SOD2, suggesting that procymidone may affect differently the cellular antioxidant system of prostate according to the exposure doses.