DOI QR코드

DOI QR Code

Mitochondrial oxidative damage by co-exposure to bisphenol A and acetaminophen in rat testes and its amelioration by melatonin

  • Hina Rashid (Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University) ;
  • Mohammad Suhail Akhter (Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University) ;
  • Saeed Alshahrani (Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University) ;
  • Marwa Qadri (Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University) ;
  • Yousra Nomier (Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University) ;
  • Maryam Sageer (Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University) ;
  • Andleeb Khan (Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University) ;
  • Mohammad F. Alam (Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University) ;
  • Tarique Anwer (Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University) ;
  • Razan Ayoub (Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University) ;
  • Rana J. H. Bahkali (Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University)
  • Received : 2022.07.27
  • Accepted : 2023.01.05
  • Published : 2023.03.31

Abstract

Objective: Human exposure to multiple xenobiotics, over various developmental windows, results in adverse health effects arising from these concomitant exposures. Humans are widely exposed to bisphenol A, and acetaminophen is the most commonly used over-the-counter drug worldwide. Bisphenol A is a well-recognized male reproductive toxicant, and increasing evidence suggests that acetaminophen is also detrimental to the male reproductive system. The recent recognition of male reproductive system dysfunction in conditions of suboptimal reproductive outcomes makes it crucial to investigate the contributions of toxicant exposures to infertility and sub-fertility. We aimed to identify toxicity in the male reproductive system at the mitochondrial level in response to co-exposure to bisphenol A and acetaminophen, and we investigated whether melatonin ameliorated this toxicity. Methods: Male Wistar rats were divided into six groups (n=10 each): a control group and groups that received melatonin, bisphenol A, acetaminophen, bisphenol A and acetaminophen, and bisphenol A and acetaminophen with melatonin treatment. Results: Significantly higher lipid peroxidation was observed in the testicular mitochondria and sperm in the treatment groups than in the control group. Levels of glutathione and the activities of catalase, glutathione peroxidase, glutathione reductase, and manganese superoxide dismutase decreased significantly in response to the toxicant treatments. Likewise, the toxicant treatments significantly decreased the sperm count and motility, while significantly increasing sperm mortality. Melatonin mitigated the adverse effects of bisphenol A and acetaminophen. Conclusion: Co-exposure to bisphenol A and acetaminophen elevated oxidative stress in the testicular mitochondria, and this effect was alleviated by melatonin.

Keywords

Acknowledgement

This work was supported by Jazan University through the Future Scientist program (grant no. FS10-088).

References

  1. McLachlan RI, de Kretser DM. Male infertility: the case for continued research. Med J Aust 2001;174:116-7. https://doi.org/10.5694/j.1326-5377.2001.tb143180.x
  2. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: The Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev 2015;36:E1-150. https://doi.org/10.1210/er.2015-1010
  3. Braun JM. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol 2017;13:161-73. https://doi.org/10.1038/nrendo.2016.186
  4. Xi W, Lee CK, Yeung WS, Giesy JP, Wong MH, Zhang X, et al. Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus-pituitary-gonadal axis of CD-1 mice. Reprod Toxicol 2011;31:409-17. https://doi.org/10.1016/j.reprotox.2010.12.002
  5. Obata T, Kubota S. Formation of hydroxy radicals by environmental estrogen-like chemicals in rat striatum. Neurosci Lett 2000;296:41-4. https://doi.org/10.1016/S0304-3940(00)01619-0
  6. Chitra KC, Rao KR, Mathur PP. Effect of bisphenol A and co-administration of bisphenol A and vitamin C on epididymis of adult rats: a histological and biochemical study. Asian J Androl 2003;5:203-8.
  7. Lan X, Fu LJ, Zhang J, Liu XQ, Zhang HJ, Zhang X, et al. Bisphenol A exposure promotes HTR-8/SVneo cell migration and impairs mouse placentation involving upregulation of integrin-β1 and MMP-9 and stimulation of MAPK and PI3K signaling pathways. Oncotarget 2017;8:51507-21. https://doi.org/10.18632/oncotarget.17882
  8. Othman AI, Edrees GM, El-Missiry MA, Ali DA, Aboel-Nour M, Dabdoub BR. Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicol Ind Health 2016;32:1537-49. https://doi.org/10.1177/0748233714561286
  9. Kristensen DM, Mazaud-Guittot S, Gaudriault P, Lesne L, Serrano T, Main KM, et al. Analgesic use: prevalence, biomonitoring and endocrine and reproductive effects. Nat Rev Endocrinol 2016;12:381-93. https://doi.org/10.1038/nrendo.2016.55
  10. Ratnasooriya WD, Jayakody JR. Long-term administration of large doses of paracetamol impairs the reproductive competence of male rats. Asian J Androl 2000;2:247-55.
  11. van den Driesche S, Macdonald J, Anderson RA, Johnston ZC, Chetty T, Smith LB, et al. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model. Sci Transl Med 2015;7:288ra80.
  12. Lister CF, McLean AE. Inhibition of DNA synthesis by paracetamol in different tissues of the rat in vivo. Toxicology 1997;116:49-57. https://doi.org/10.1016/S0300-483X(96)03521-4
  13. Sayeed I, Parvez S, Winkler-Stuck K, Seitz G, Trieu I, Wallesch CW, et al. Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole. FASEB J 2006;20:556-8. https://doi.org/10.1096/fj.05-4748fje
  14. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978;52:302-10. https://doi.org/10.1016/S0076-6879(78)52032-6
  15. Tabassum H, Parvez S, Pasha ST, Banerjee BD, Raisuddin S. Protective effect of lipoic acid against methotrexate-induced oxidative stress in liver mitochondria. Food Chem Toxicol 2010;48:1973-9. https://doi.org/10.1016/j.fct.2010.04.047
  16. Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984;105:114-21. https://doi.org/10.1016/S0076-6879(84)05015-1
  17. McFarland VA, Inouye LS, Lutz CH, Jarvis AS, Clarke JU, McCant DD. Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown bullhead, Ameiurus nebulosus. Arch Environ Contam Toxicol 1999;37:236-41. https://doi.org/10.1007/s002449900510
  18. Claiborne A. Catalase activity. In: Greenwald RA, editor. Handbook of methods for oxygen radical research. CRC Press; 1985. p. 283-4.
  19. Govil N, Chaudhary S, Waseem M, Parvez S. Postnuclear supernatant: an in vitro model for assessing cadmium-induced neurotoxicity. Biol Trace Elem Res 2012;146:402-9. https://doi.org/10.1007/s12011-011-9263-y
  20. Bairy L, Paul V, Rao Y. Reproductive toxicity of sodium valproate in male rats. Indian J Pharmacol 2010;42:90-4. https://doi.org/10.4103/0253-7613.64503
  21. Correia S, Oliveira PF, Guerreiro PM, Lopes G, Alves MG, Canario AV, et al. Sperm parameters and epididymis function in transgenic rats overexpressing the Ca2+-binding protein regucalcin: a hidden role for Ca2+ in sperm maturation? Mol Hum Reprod 2013;19:581-9. https://doi.org/10.1093/molehr/gat030
  22. Saalu LC, Kpela T, Benebo AS, Oyewopo AO, Anifowope EO, Oguntola JA. The dose-dependent testiculoprotective and testiculotoxic potentials of telfairia occidentalis hook f. leaves extract in rat. Int J Appl Res Nat Prod 2010;3:27-38.
  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-75. https://doi.org/10.1016/S0021-9258(19)52451-6
  24. Rashid H, Ahmad F, Rahman S, Ansari RA, Bhatia K, Kaur M, et al. Iron deficiency augments bisphenol A-induced oxidative stress in rats. Toxicology 2009;256:7-12. https://doi.org/10.1016/j.tox.2008.10.022
  25. Rafiee Z, Rezaee-Tazangi F, Zeidooni L, Alidadi H, Khorsandi L. Protective effects of selenium on bisphenol A-induced oxidative stress in mouse testicular mitochondria and sperm motility. JBRA Assist Reprod 2021;25:459-65. https://doi.org/10.5935/1518-0557.20210010
  26. Anjum S, Rahman S, Kaur M, Ahmad F, Rashid H, Ansari RA, et al. Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem Toxicol 2011;49:2849-54. https://doi.org/10.1016/j.fct.2011.07.062
  27. Alahmar AT. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci 2019;12:4-18. https://doi.org/10.4103/jhrs.JHRS_150_18
  28. Huang W, Cao Z, Yao Q, Ji Q, Zhang J, Li Y. Mitochondrial damage are involved in Aflatoxin B1-induced testicular damage and spermatogenesis disorder in mice. Sci Total Environ 2020;701:135077.
  29. Tabassum H, Parvez S, Rehman H, Banerjee BD, Raisuddin S. Catechin as an antioxidant in liver mitochondrial toxicity: inhibition of tamoxifen-induced protein oxidation and lipid peroxidation. J Biochem Mol Toxicol 2007;21:110-7. https://doi.org/10.1002/jbt.20167
  30. Oz E, Ilhan MN. Effects of melatonin in reducing the toxic effects of doxorubicin. Mol Cell Biochem 2006;286:11-5. https://doi.org/10.1007/s11010-005-9003-8
  31. Kotler M, Rodriguez C, Sainz RM, Antolin I, Menendez-Pelaez A. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 1998;24:83-9. https://doi.org/10.1111/j.1600-079X.1998.tb00371.x
  32. Hardeland R, Reiter RJ, Poeggeler B, Tan DX. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 1993;17:347-57. https://doi.org/10.1016/S0149-7634(05)80016-8
  33. Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F. Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 1994;55:PL271-6. https://doi.org/10.1016/0024-3205(94)00666-0
  34. Liu WC, Wang X, Zhang X, Chen X, Jin X. Melatonin supplementation, a strategy to prevent neurological diseases through maintaining integrity of blood brain barrier in old people. Front Aging Neurosci 2017;9:165.
  35. Guo ZN, Jin H, Sun H, Zhao Y, Liu J, Ma H, et al. Antioxidant melatonin: potential functions in improving cerebral autoregulation after subarachnoid hemorrhage. Front Physiol 2018;9:1146.
  36. Barbagallo F, Condorelli RA, Mongioi LM, Cannarella R, Aversa A, Calogero AE, et al. Effects of bisphenols on testicular steroidogenesis. Front Endocrinol (Lausanne) 2020;11:373.
  37. Awad H, Halawa F, Mostafa T, Atta H. Melatonin hormone profile in infertile males. Int J Androl 2006;29:409-13. https://doi.org/10.1111/j.1365-2605.2005.00624.x