Browse > Article
http://dx.doi.org/10.4489/MYCO.2009.37.1.053

Screening of Biodegradable Function of Indigenous Ligno-degrading Mushroom Using Dyes  

Jang, Kab-Yeul (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
Cho, Soo-Muk (Functional Food & Nutrition Division National Academy of Agricultural Science)
Seok, Soon-Ja (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
Kim, Gyu-Hyun (Department of Horticultural Bio-Industry, Cheonan Yonam College)
Sung, Jae-Mo (Department of Agricultural Biology, Kangwon National University)
Publication Information
Mycobiology / v.37, no.1, 2009 , pp. 53-61 More about this Journal
Abstract
The process of biodegradation in lingo-cellulosic materials is critically relevant to biospheric carbon. The study of this natural process has largely involved laboratory investigations, focused primarily on the biodegradation and recycling of agricultural by-products, generally using basidiomycetes species. In order to collect super white rot fungi and evaluate its ability to degrade lingo-cellulosic material, 35 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye. In the laccase enzymatic analysis chemical test, 33 white rot fungi and 2 brown rot fungi were identified. The degradation ability of polycyclic aromatic hydrocarbons (PAHs) according to the utilized environmental conditions was higher in the mushrooms grown in dead trees and fallen leaves than in the mushrooms grown in humus soil and livestock manure. Using Poly-R 478 dye to assess the PAH-degradation activity of the identified strains, four strains, including Agrocybe pediades, were selected. The activities of laccase, MnP, and Lip of the four strains with PAH-degrading ability were highest in Pleurotus incarnates. 87 fungal strains, collected from forests, humus soil, livestock manure, and dead trees, were screened for enzyme activities and their potential to decolorize the commercially used Poly-R 478 dye on solid media. Using Poly-R 478 dye to assess the PAHdegrading activity of the identified strains, it was determined that MKACC 51632 and 52492 strains evidenced superior activity in static and shaken liquid cultures. Subsequent screening on plates containing the polymeric dye poly R-478, the decolorization of which is correlated with lignin degradation, resulted in the selection of a strain of Coriolus versicolor, MKACC52492, for further study, primarily due to its rapid growth rate and profound ability to decolorize poly R-478 on solid media. Considering our findings using Poly-R 478 dye to evaluate the PAH-degrading activity of the identified strains, Coriolus versicolor, MKACC 52492 was selected as a favorable strain. Coriolus versicolor, which was collected from Mt. Yeogi in Suwon, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP).
Keywords
Biodegradation; Mushrooms;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bumpus, J., Tien, M., Wright, D. and Aust, S. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434-1436   DOI
2 Camarero, S., Sarkar, S., Ruiz-Dueñas, F. J., Martinez, M. J. and Martinez, A. T. 1999. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274:10324-10330   DOI   ScienceOn
3 Deguchi, T., Kitaoka, Y., Kakezawa, M. and Nishida, T. 1998. Purification and characterization of a nylon-degrading enzyme. Appl. Environ. Microbiol. 64:1366-1371
4 D'Souza, T. M., Boominathan, K. and Reddy, C. A. 1996. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl. Environ. Microbiol. 62:3739-3744
5 Ehara, K., Tsutsumi, Y. and Nishida, T. 1997. Biobleaching of softwood and hardwood kraft pulp with manganese peroxidase. Mokuzai Gakkaishi. 43:861-868
6 Dass, S. B. and Reddy, C. A. 1990. Characterization of extracellular peroxidases produced by acetate-buffered cultures of Phanerochaete chrysosporium. FEMS Microbiol. Lett. 69:221-224   DOI   ScienceOn
7 Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol. Rev. 13:125-135   DOI   ScienceOn
8 Iiyoshi, Y., Tsutsumi, Y. and Nishida, T. 1998. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J. Wood Sci. 44:222-229   DOI
9 Kirk, T. K. and Farrell, R. L. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465-505   DOI
10 Niku-Paavola, M. L., Karhunen, E., Salola, P. and Raunio, V. 1988. Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem. J. 254:877-884   DOI
11 Deguchi, T., Kakezawa, M. and Nishida, T. 1997. Nylon biodegradation by lignin-degrading fungi. Appl. Environ. Microbiol. 63:329-331
12 Sannia, G., Limongi, P., Cocca, E., Buonocore, F., Nitti, G. and Giardina, P. 1991. Purification and characterization of a veratryl alcohol oxidase enzyme from the lignin degrading basidiomycete Pleurotus ostreatus. Biochim. Biophys. Acta. 1073:114-119   DOI
13 Ehara, K., Sutsumi, T. and Nishida, Y. 2000. Polyethylene degradation by manganese peroxidase in the absence of hydrogen peroxide. J. Wood Sci. 46:180-183   DOI   ScienceOn
14 Eriksson, K. E. L., Blanchette, R. A. and Ander, P. 1990. Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York
15 Giardina, P., Aurilia, V., Cannio, R., Marzullo, L., Amoresano, A., Siciliano, R., Pucci, P. and Sannia, G. 1996. The gene, protein and glycan structures of laccase from Pleurotus ostreatus. Eur. J. Biochem. 235:508-515   DOI   ScienceOn
16 Joshi, D. and Gold, M. 1993. Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59:1779-1785
17 Kashino, Y., Nishida, T., Takahara, Y., Fujita, K., Kondo, R. and Sakai, K. 1993. Biomechanical pulping using white rot fungus IZU-154. Tappi J. 76(12):167-171
18 Nishida, T., Tsutsumi, Y., Kemi, M., Haneda, T. and Okamura, H. 1999. Decolorization of anthraquinone dyes by whiterot fungi and its related enzymes. J. Jpn. Soc. Water Environ. 22:465-471 (in Japanese)   DOI
19 Tekerea, M., Mswakab, A. Y., Zvauyaa, R. and Reada, J. S. 2001. Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzyme Microb. Technol. 28:420-426   DOI   ScienceOn
20 Paszczynski, A., Crawford, R. L. and Huynh, V. B. 1988. Manganese peroxidase of Phanerochaete chrysosporium: Purification. Methods Enzymol. 161:264-270   DOI
21 Anoliefo, G. O., Isikhuemhen, O. S. and Okosolo, E. C. 1999. Traditional coping mechanisms and environmental sustainability strategies in Nnewi. J. Agric. Environ. Ethics. 11:101-109   DOI   ScienceOn
22 Rinker, D. L. 2002. Handling and using “spent” mushroom substrate around the world. In: Sánchez JE, Huerta G, Montiel E (eds) Mushroom biology and mushroom products. Impresos Júpiter, Cuernavaca, pp. 43-60
23 Katagiri, N., Tsutsumi, Y. and Nishida, T. 1995. Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system. Appl. Environ. Microbiol. 61:617-622
24 Ollikka, P., Alhonmaki, K., Leppanen, V. M., Glumo, T., Raijola, T. and Suominen, I. 1993. Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxi-dase isoenzymes from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59:4010-4016
25 Paice, M., Reid, I., Bourbonnais, R., Archibald, F. and Jurasek, L. 1993. Manganese peroxidase, produced by Trametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp. Appl. Environ. Microbiol. 59:260-265
26 Tien, M. and Kirk, T. K. 1988. Lignin peroxidase of Phanerochaete hrysosporium. Methods Enzymol. 161:238-249   DOI
27 Asada, Y., Watanabe, A., Irie, T., Nakayama, T. and Kuwahara, M. 1995. Structures of genomic and complementary DNAs coding for Pleurotus ostreatus manganese (II) peroxidase. Biochim. Biophys. Acta. Protein. Struct. Mol. Enzym. 1251:205-209   DOI   ScienceOn
28 Cohen, R., Hadar, Y. and Yarden, O. 2001. Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ. Microbiol. 3:312-322   DOI   ScienceOn
29 Gold, M. K., Glenn, J. K. and Alic, M. 1988. Use of polymeric dyes in lignin biodegradation assays. Methods Enzymol. 161:74-78   DOI
30 Jaouani, A., Sayadi, S., Vanthournhout, M. and Penninck, M. J. 2003. Potent fungi for decolourisation of olive oil mill wastewaters. Enzyme Microb. Technol. 33:802-809   DOI   ScienceOn
31 Tuor, U., Winterhalter, K. and Fiechter, A. 1995. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J. Biotechnol. 41:1-17   DOI   ScienceOn