• Title/Summary/Keyword: manganese nodule

Search Result 73, Processing Time 0.02 seconds

Reserve Evaluation of Deep-Sea Manganese Nodules Using Fractal Model (프랙탈모델을 이용한 심해저 망간단괴의 매장량평가)

  • Yun, Chi Ho;Kwon, Kwang Soo;Yang, Seung Jin
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.155-164
    • /
    • 1995
  • The kriging model, one of the geostatistical models, has been used to evaluate the deep-sea manganese nodule deposits until now. The distribution of the manganese nodule deposits estimated by the model shows the smooth surface as well as much difference from the actual distribution. Subsequently, it estimates the deposit distribution roughly in terms of the limited data of surveyed zone. Therefore, this paper presents the interpretation methodology of the deep-sea manganese nodule deposit distribution by using the fractal model to overcome the problems caused by the geostatistical model. Also, the manganese nodule distributions are interpreted by using the manganese nodule data sampled in the GH82-4 zone, west longitude $165^{\circ}40^{\prime}-169^{\circ}00^{\prime}$, and south latitude $0^{\circ}00^{\prime}-2^{\circ}40^{\prime}$ neighboring Nova-Canton Trough in the Pacific Ocean which was surveyed by the Geological Survey of Japan in 1982.

  • PDF

Adsorption Features of Nickel Ion on Deep Sea Manganese Nodule (심해저 망간단괴를 흡착제로 한 니켈 함유 폐수 처리에 대한 기초 연구)

  • Baek, Mi-Hwa;Shin, Myung-Sook;Kim, Dong-Su;Jung, Sun-Hee;Park, Kyoung-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.116-121
    • /
    • 2006
  • Fundamental investigations have been carried out to find the applicability of manganese nodule as an adsorbent of nickel ion with an intention that nickel can be secured in manganese nodule along with the treatment of wastewater. The average content of manganese in nodules which used in the experiments was about 27%. The content of nickel in manganese nodules was observed to increase up to 4 times higher with comparison to its original value after adsorption. When the initial concentration of nickel ion in artificial wastewater was lower than 500 mg/L, its adsorbed amount on manganese nodule was shown to increase continuously. However, no more than about 82 mg/L of nickel was attained at higher initial nickel ion concentration than 500 mg/L. The adsorption of nickel ion was increased with temperature under experimental conditions and as the size of manganese nodule particles became smaller more nickel ion was adsorbed on adsorbent. Regarding the effect of pH, the adsorption of nickel ion was more hindered as the solution became acidic. Adsorption behavior of nickel ion on manganese nodule was found to follow the Freundlich model well and kinetic analysis showed that the adsorption reaction of nickel ion was second order. Thermodynamic parameters for the nickel ion adsorption were estimated on the basis of thermodynamic equations and they were in good agreement with experimental results.

Regional Occurrence and Sedimentary Environment of Manganese Nodule in KODOS area, C-C zone of NE Pacific (북동태평양 한국 심해저 연구지역 망간단괴의 지역적 분포와 퇴적환경)

  • Chi, Sang-Bum;Kang, Jung-Keuk;Oh, Jae-Kyung;Son, Seung-Kyu;Park, Cheong-Kee
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.257-267
    • /
    • 2003
  • Deep-sea bottom photographs acquired in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific were analyzed to reveal the controlling processes for the spatial variation of manganese nodule. The results show that regional-scale occurrence variations of manganese nodule are mainly controlled by primary productivity of surface water, sedimentation rate, and water depth (or carbonate compensation depth). As a result, the diagenetic accretion on nodules increases toward southwest while hydrogenetic accretion increases toward northeast. Considering the northwestward movement of Pacific Plate, this regional-scale variation of manganese nodule occurrence seems to be affected by oceanic environment during the active growth period (Oligocene-Miocene) of Pacific Plate.

Application of Adsorption Isotherms for Manganese Nodule-Cadmium Interaction (망간단괴-Cd 상호작용에 대한 등온흡착식 적용)

  • 전영신;김진화;김동수
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.37-43
    • /
    • 1999
  • Studies have been conducted for the purpose of using manganese nodule and residue remained after extracting valuable metals [mm it as the adsorbent of cadmium wastewater. The study observed the adsorption percentage according to initial cadmium concentration and interpreted each adsorption systems by applying the Freundlich, Langmuir, and Temkin isotherms. The adsorption amounts increased as the initial concentration at cadmium ion increased, whereas the adsorption percentage decreased. Linearity was shown when applied to the Freundlich and Langmuir isotherms. The k value which evaluates the adsorption capacity of adsorbent in Freundlich isotherm, turned out to be 11.72, the highest in case of manganese nodule. The Xm value, the maximum adsorption amount of the adsorbate that adsorbs as a monolayer in Langmuir isotherm of manganese nodule, was estimated as 0.16, representing higher value compared with those of leached residue, leached residue-raw manganese nodule mixture, and activated carbon.

  • PDF

Status of Manganese Nodule Samples in the Library of Marine Samples (해양시료도서관에 입고된 심해저 망간단괴 시료 현황)

  • Lee, Hyun-Bok;Kim, Wonnyon;Ko, Young-Tak;Oh, Jae-Ryong;Chi, Sang-Bum
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.515-524
    • /
    • 2014
  • The Korea Institute of Ocean Science and Technology has acquired detailed biological, chemicophysical, and geological data in the northeastern Pacific through a manganese nodule program since 1983. Plenty of manganese nodules were collected to estimate the amount of resources by free-fall grab and box corer. The collected manganese nodules have been archived systematically in the rock and mineral storage section of the Library of Marine Samples (LIMS) since 2012. The LIMS provides essencial information on the stored samples including sample name, nodule type, sampling location, depth, and equipment. Although a high quality database of the information system is under construction, the samples have tagged information for manganese nodules like chemical composition, morphology, weight, size, abundance, and photograph. In this study, we attempted to provide information on the well-organized and easily accessible archived manganese nodule samples for future studies and to introduce the usefulness of the LIMS.

Mineralogical-geochemical Characteristics of Manganese Nodules in the Deep Subseafloor Sediments at Site U1371 in the Western South Pacific Gyre Area (남서태평양 환류지역 U1371 심부퇴적층에서 발견된 망가니즈단괴의 광물학적-지화학적 특성 연구)

  • Yang, Kiho;Jung, Jaewoo
    • Ocean and Polar Research
    • /
    • v.44 no.2
    • /
    • pp.139-145
    • /
    • 2022
  • Manganese nodules were recovered within the deep subseafloor sediments (118.22 mbsf) at Site U1371 during International Ocean Discovery Program (IODP) expedition 329 from the South Pacific Gyre (SPG). Because most manganese nodules exist on the seabed surface, nodules present in deep sediments are uncommon. Therefore, the growth origin of manganese nodules was identified through mineralogical and geochemical analyses. The manganese nodule was divided into the concentric layer outside the manganese region and the inner part of the phosphatized region consisting of manganese oxide minerals and carbonate fluorapatite (CFA) minerals, respectively. The two-dimensional element distribution analysis of Mn, Co, Ni, Sr and Cu, Zn with low Mn/Fe ratio confirmed that manganese nodules were formed predominantly by a hydrogenetic process and a biogenic process in certain manganese layers. As a result, the manganese nodule was continuously precipitated in SPG environments of oligotrophic open paleoocean conditions and rapidly buried with siliceous ooze sediments when the SPG changed to a eutrophic environment. It has been confirmed that manganese nodules found within deep subseafloor sediments could be used as a new proxy for the reconstruction of paleooceanographic conditions.

Shattering Ratio of Manganese Nodule and Physical Properties of Powdered Manganese Nodule and Sea eottom Sediment (망간단괴의 분화율과 망간단괴 분말 및 해저퇴적물의 물리적 특성)

  • Choi, Hun-Soo;Kang, Jung-Seock;Chang, Se-Won;Koh, Sang-Mo;Um, In-Kwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.277-287
    • /
    • 2007
  • To understand the effects of the powdered manganese nodule and sea bottom sediment pumped up with nodules on the mining process, the shattering ratio of manganese nodule and their physical properties are analyzed. The self shattering ratio and crushing shattering ratio are about 27% and about 3%, respectively. Then total shattering ratio is about 30%. The initial turbidity of the powdered manganese nodule and the bottom sediment show high, i.e., about 3,100 and 1,850 respectively. But their turbidities decrease rapidly with time. After 1 hour, turbidity of the powdered manganese nodule drops to about 1,570 and that of the bottom sediment to 1,310. The turbidity of Na-bentonite changes from 820 to 730 after 1 h and to 700 after 2 h. The viscosity of powdered manganese nodule is $1.4{\sim}1.5cP$, and the viscosity of bottom sediment is less than 1 cP. The viscosity fo Na-bentonite is initially 37.2 and increase with time to 86.4 cP after 30 min. The high initial turbidity of powdered manganese nodule is due to dark color of the powder. The high specific gravity makes rapid precipitation and then decreases the turbidity rapidly. The bottom sediment shows high initial turbidity because of easy suspension with very fine particle size. But it cannot be hydrated and formed gel in suspension, then it is easily precipitated. However Na-bentonite is hydrated to the expended state and makes gel state, then it shows high turbidity and high viscosity. These physical properties of the powdered manganese nodule suggest that the powder of manganese nodule should not make scaling inside of lifting pipe or pump. And the bottom sediment lifted up with manganese nodule should not play the role of drilling mud shch as Na-bentonite.

Numerical Analysis of Deep Seawater Flow Disturbance Characteristics Near the Manganese Nodule Mining Device (망간단괴 집광기 주위 해수 유동교란 수치해석)

  • Lim, Sung-Jin;Chae, Yong-Bae;Jeong, Shin-Taek;Cho, Hong-Yeon;Lee, Sang-Ho
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.475-485
    • /
    • 2014
  • Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.

Investigations on the Adsorption Characteristics of $SO_2$ Gas on Fixed Bed Manganese Nodule Column (고정(固定) 흡착층(吸着層)에서 망간단괴(團塊)의 $SO_2$ 가스 흡착(吸着) 특성(特性)에 관한 연구(硏究))

  • Baek, Mi-Hwa;Kim, Dong-Su;Jung, Sun-Hee;Park, Kyoung-Ho
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.3-12
    • /
    • 2006
  • The feasibility for the employment of manganese nodule as an adsorbent for $SO_{2}$ gas has been investigated. The specific surface area of manganese nodule particle, which used in the experiments, was ca. $221.5m^{2}/g$ and the content of sulfur in manganese nodule was observed to significantly increase after $SO_{2}$ was adsorbed on it. The EPMA for the distilled water-washed and methanol-washed manganese nodule particle after $SO_{2}$ adsorption showed that its sulfur content was slightly decreased to 14.7% and 13.1% respectively, from 15.4% before washing. The XRD analysis of manganese nodule showed that todorokite and birnessite, which are manganese oxides, and quartz and anorthite were the major mineralogical components and weak $MnSO_{4}$ peaks were detected after $SO_{2}$ was adsorbed on manganese nodule. For an comparative investigation, limestone was also tested as an adsorbent for $SO_{2}$, however, no peaks for $CaSO_{4}$ were found by XRD analysis after the adsorption of $SO_{2}$. As the size of adsorbent increased, time for breakthrough was decreased and the adsorbed amount of $SO_{2}$ was also diminished. The $SO_{2}$ adsorption was hindered when its flow rate became high and the adsorption capacity of manganese nodule was observed to be superior to that of limestone. In addition, the mixture of manganese nodule and limestone did not show an increase in the adsorption of $SO_{2}$. Finally, as the temperature was raised, the adsorbed amount of adsorbate on manganese nodule was found to be decreased.

Evaluation on R&D Progress for Manganese Nodule Development and Its Prospects (심해저 망간단괴 개발사업의 국제기술 동향 분석 및 향후 개발 전망)

  • Park, Se-Hun;Park, Seong-Wook;Kang, Gil-Mo
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.477-490
    • /
    • 2005
  • The development of manganese nodule mining technology is very important in order to secure a long-term and stable supply of rare strategic metals. In the twenty years following the R&D activities with the international consortia in the 1970s, studies on mining technologies have been carried out by several national projects in Korea. The current metal prices such as copper, nickel, cobalt, and manganese have been drastically changed since 2002. Rapid economic growth of Asian countries, especially China, have induced the situation. And the possibility of copper shortage is looming just around the comer. Because of the imbalance between production and consumption, copper is fundamentally the most threatened metal in the future in terms of potential metal shortage. Manganese nodules contain a considerable percentage of copper as the future metal resource. Therefore, it is necessary to concentrate our effects on developing these resources. This paper introduces our evaluation of R&D progress for the development of manganese nodules. The issue and role of manganese nodules during the difficult period of a potential future metal shortage period is discussed and its prospect outlined. Also, this paper tried to emphasize the necessity of continuous R&D efforts for the commercial development of such mineral resources.