The kriging model, one of the geostatistical models, has been used to evaluate the deep-sea manganese nodule deposits until now. The distribution of the manganese nodule deposits estimated by the model shows the smooth surface as well as much difference from the actual distribution. Subsequently, it estimates the deposit distribution roughly in terms of the limited data of surveyed zone. Therefore, this paper presents the interpretation methodology of the deep-sea manganese nodule deposit distribution by using the fractal model to overcome the problems caused by the geostatistical model. Also, the manganese nodule distributions are interpreted by using the manganese nodule data sampled in the GH82-4 zone, west longitude $165^{\circ}40^{\prime}-169^{\circ}00^{\prime}$, and south latitude $0^{\circ}00^{\prime}-2^{\circ}40^{\prime}$ neighboring Nova-Canton Trough in the Pacific Ocean which was surveyed by the Geological Survey of Japan in 1982.
Fundamental investigations have been carried out to find the applicability of manganese nodule as an adsorbent of nickel ion with an intention that nickel can be secured in manganese nodule along with the treatment of wastewater. The average content of manganese in nodules which used in the experiments was about 27%. The content of nickel in manganese nodules was observed to increase up to 4 times higher with comparison to its original value after adsorption. When the initial concentration of nickel ion in artificial wastewater was lower than 500 mg/L, its adsorbed amount on manganese nodule was shown to increase continuously. However, no more than about 82 mg/L of nickel was attained at higher initial nickel ion concentration than 500 mg/L. The adsorption of nickel ion was increased with temperature under experimental conditions and as the size of manganese nodule particles became smaller more nickel ion was adsorbed on adsorbent. Regarding the effect of pH, the adsorption of nickel ion was more hindered as the solution became acidic. Adsorption behavior of nickel ion on manganese nodule was found to follow the Freundlich model well and kinetic analysis showed that the adsorption reaction of nickel ion was second order. Thermodynamic parameters for the nickel ion adsorption were estimated on the basis of thermodynamic equations and they were in good agreement with experimental results.
Deep-sea bottom photographs acquired in the Clarion-Clipperton fracture zone of the northeast equatorial Pacific were analyzed to reveal the controlling processes for the spatial variation of manganese nodule. The results show that regional-scale occurrence variations of manganese nodule are mainly controlled by primary productivity of surface water, sedimentation rate, and water depth (or carbonate compensation depth). As a result, the diagenetic accretion on nodules increases toward southwest while hydrogenetic accretion increases toward northeast. Considering the northwestward movement of Pacific Plate, this regional-scale variation of manganese nodule occurrence seems to be affected by oceanic environment during the active growth period (Oligocene-Miocene) of Pacific Plate.
Studies have been conducted for the purpose of using manganese nodule and residue remained after extracting valuable metals [mm it as the adsorbent of cadmium wastewater. The study observed the adsorption percentage according to initial cadmium concentration and interpreted each adsorption systems by applying the Freundlich, Langmuir, and Temkin isotherms. The adsorption amounts increased as the initial concentration at cadmium ion increased, whereas the adsorption percentage decreased. Linearity was shown when applied to the Freundlich and Langmuir isotherms. The k value which evaluates the adsorption capacity of adsorbent in Freundlich isotherm, turned out to be 11.72, the highest in case of manganese nodule. The Xm value, the maximum adsorption amount of the adsorbate that adsorbs as a monolayer in Langmuir isotherm of manganese nodule, was estimated as 0.16, representing higher value compared with those of leached residue, leached residue-raw manganese nodule mixture, and activated carbon.
The Korea Institute of Ocean Science and Technology has acquired detailed biological, chemicophysical, and geological data in the northeastern Pacific through a manganese nodule program since 1983. Plenty of manganese nodules were collected to estimate the amount of resources by free-fall grab and box corer. The collected manganese nodules have been archived systematically in the rock and mineral storage section of the Library of Marine Samples (LIMS) since 2012. The LIMS provides essencial information on the stored samples including sample name, nodule type, sampling location, depth, and equipment. Although a high quality database of the information system is under construction, the samples have tagged information for manganese nodules like chemical composition, morphology, weight, size, abundance, and photograph. In this study, we attempted to provide information on the well-organized and easily accessible archived manganese nodule samples for future studies and to introduce the usefulness of the LIMS.
Manganese nodules were recovered within the deep subseafloor sediments (118.22 mbsf) at Site U1371 during International Ocean Discovery Program (IODP) expedition 329 from the South Pacific Gyre (SPG). Because most manganese nodules exist on the seabed surface, nodules present in deep sediments are uncommon. Therefore, the growth origin of manganese nodules was identified through mineralogical and geochemical analyses. The manganese nodule was divided into the concentric layer outside the manganese region and the inner part of the phosphatized region consisting of manganese oxide minerals and carbonate fluorapatite (CFA) minerals, respectively. The two-dimensional element distribution analysis of Mn, Co, Ni, Sr and Cu, Zn with low Mn/Fe ratio confirmed that manganese nodules were formed predominantly by a hydrogenetic process and a biogenic process in certain manganese layers. As a result, the manganese nodule was continuously precipitated in SPG environments of oligotrophic open paleoocean conditions and rapidly buried with siliceous ooze sediments when the SPG changed to a eutrophic environment. It has been confirmed that manganese nodules found within deep subseafloor sediments could be used as a new proxy for the reconstruction of paleooceanographic conditions.
To understand the effects of the powdered manganese nodule and sea bottom sediment pumped up with nodules on the mining process, the shattering ratio of manganese nodule and their physical properties are analyzed. The self shattering ratio and crushing shattering ratio are about 27% and about 3%, respectively. Then total shattering ratio is about 30%. The initial turbidity of the powdered manganese nodule and the bottom sediment show high, i.e., about 3,100 and 1,850 respectively. But their turbidities decrease rapidly with time. After 1 hour, turbidity of the powdered manganese nodule drops to about 1,570 and that of the bottom sediment to 1,310. The turbidity of Na-bentonite changes from 820 to 730 after 1 h and to 700 after 2 h. The viscosity of powdered manganese nodule is $1.4{\sim}1.5cP$, and the viscosity of bottom sediment is less than 1 cP. The viscosity fo Na-bentonite is initially 37.2 and increase with time to 86.4 cP after 30 min. The high initial turbidity of powdered manganese nodule is due to dark color of the powder. The high specific gravity makes rapid precipitation and then decreases the turbidity rapidly. The bottom sediment shows high initial turbidity because of easy suspension with very fine particle size. But it cannot be hydrated and formed gel in suspension, then it is easily precipitated. However Na-bentonite is hydrated to the expended state and makes gel state, then it shows high turbidity and high viscosity. These physical properties of the powdered manganese nodule suggest that the powder of manganese nodule should not make scaling inside of lifting pipe or pump. And the bottom sediment lifted up with manganese nodule should not play the role of drilling mud shch as Na-bentonite.
Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.
The feasibility for the employment of manganese nodule as an adsorbent for $SO_{2}$ gas has been investigated. The specific surface area of manganese nodule particle, which used in the experiments, was ca. $221.5m^{2}/g$ and the content of sulfur in manganese nodule was observed to significantly increase after $SO_{2}$ was adsorbed on it. The EPMA for the distilled water-washed and methanol-washed manganese nodule particle after $SO_{2}$ adsorption showed that its sulfur content was slightly decreased to 14.7% and 13.1% respectively, from 15.4% before washing. The XRD analysis of manganese nodule showed that todorokite and birnessite, which are manganese oxides, and quartz and anorthite were the major mineralogical components and weak $MnSO_{4}$ peaks were detected after $SO_{2}$ was adsorbed on manganese nodule. For an comparative investigation, limestone was also tested as an adsorbent for $SO_{2}$, however, no peaks for $CaSO_{4}$ were found by XRD analysis after the adsorption of $SO_{2}$. As the size of adsorbent increased, time for breakthrough was decreased and the adsorbed amount of $SO_{2}$ was also diminished. The $SO_{2}$ adsorption was hindered when its flow rate became high and the adsorption capacity of manganese nodule was observed to be superior to that of limestone. In addition, the mixture of manganese nodule and limestone did not show an increase in the adsorption of $SO_{2}$. Finally, as the temperature was raised, the adsorbed amount of adsorbate on manganese nodule was found to be decreased.
The development of manganese nodule mining technology is very important in order to secure a long-term and stable supply of rare strategic metals. In the twenty years following the R&D activities with the international consortia in the 1970s, studies on mining technologies have been carried out by several national projects in Korea. The current metal prices such as copper, nickel, cobalt, and manganese have been drastically changed since 2002. Rapid economic growth of Asian countries, especially China, have induced the situation. And the possibility of copper shortage is looming just around the comer. Because of the imbalance between production and consumption, copper is fundamentally the most threatened metal in the future in terms of potential metal shortage. Manganese nodules contain a considerable percentage of copper as the future metal resource. Therefore, it is necessary to concentrate our effects on developing these resources. This paper introduces our evaluation of R&D progress for the development of manganese nodules. The issue and role of manganese nodules during the difficult period of a potential future metal shortage period is discussed and its prospect outlined. Also, this paper tried to emphasize the necessity of continuous R&D efforts for the commercial development of such mineral resources.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.