• Title/Summary/Keyword: maneuvering target

Search Result 201, Processing Time 0.023 seconds

Time-Delay Control for Integrated Missile Guidance and Control

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • In this paper, integrated missile guidance and control systems using time-delay control (TDC) are developed. The next generation missile requires that an interceptor hits the target, maneuvering with small miss-distances, and has lower weight to reduce costs. This is possible if the synergism existing between the guidance and control subsystems is exploited by the integrated controller. The TDC law is a robust control technique for nonlinear systems, and it has a very simple structure. The feature of TDC is to directly estimate the unknown dynamics and the unexpected disturbance using one-step time-delay. To investigate the performance of the integrated controller, numerical simulations are performed as the maneuver of the target. The results show that the integrated guidance and control system has a good performance.

An Algorithm for Submarine Passive Sonar Simulator (잠수함 수동소나 시뮬레이터 알고리즘)

  • Jung, Young-Cheol;Kim, Byoung-Uk;An, Sang-Kyum;Seong, Woo-Jae;Lee, Keun-Hwa;Hahn, Joo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.472-483
    • /
    • 2013
  • Actual maritime exercise for improving the capability of submarine sonar operator leads to a lot of cost and constraints. Sonar simulator maximizes the capability of sonar operator and training effect by solving these problems and simulating a realistic battlefield environment. In this study, a passive sonar simulator algorithm is suggested, where the simulator is divided into three modules: maneuvering module, noise source module, and sound propagation module. Maneuvering module is implemented in three-dimensional coordinate system and time interval is set as the rate of vessel changing course. Noise source module consists of target noise, ocean ambient noise, and self noise. Target noise is divided into modulated/unmodulated and narrowband/broadband signals as their frequency characteristics, and they are applied to ship radiated noise level depending on the vessel tonnage and velocity. Ocean ambient noise is simulated depending on the wind noise considering the waveguide effect and other ambient noise. Self noise is also simulated for flow noise and insertion loss of sonar-dome. The sound propagation module is based on ray propagation, where summation of amplitude, phase, and time delay for each eigen-ray is multiplied by target noise in the frequency domain. Finally, simulated results based on various scenarios are in good agreement with generated noise in the real ocean.

The Reduction Methodology of External Noise with Segmentalized PSO-FCM: Its Application to Phased Conversion of the Radar System on Board (축별 분할된 PSO-FCM을 이용한 외란 감소방안: 함정용 레이더의 위상변화 적용)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.638-643
    • /
    • 2012
  • This paper presents an intelligent reduction method for external noise. The main idea comes from PSO-FCM (Particle Swam Optimization Fused fuzzy C-Means) clustering. The data of the target is transformed from the antenna coordinates to the vessel one and to the system coordinates. In the conversion, the overall noises hinder observer to get the exact position and velocity of the maneuvering target. While the filter is used for tracking system, unexpected acceleration becomes the main factor which makes the uncertainty. In this paper, the tracking efficiency is improved with the PSO-FCM and the compensation methodology. The acceleration is approximated from the external noise splitted by the proposed clustering method. After extracting the approximated acceleration, the rest in the noise is filtered by the filter and the compensation is added to after that. Proposed tracking method is applicable to the linear model and nonlinear one together. Also, it can do to the on-line system. Finally, some examples are provided to examine the reliability of the proposed method.

A study on data association based on multiple model for improving target tracking performance in maneuvering interval in bistatic sonar environments (양상태 소나를 운용하는 자함이 기동하는 구간에서 추적성능향상을 위한 다수모델기반의 자료결합기법 연구)

  • Park, Seung-Hyo;Song, Taek-Lyul;Lee, Seung-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.202-210
    • /
    • 2017
  • For the target tracking in cluttered environment using a bistatic sonar whose transmitter and receiver are separately positioned, it is necessary to use data association algorithm via applying a proper measurement modelling to the bistatic sonar. The measurements obtained from the interval of ownship's maneuver have an increased error due to uncertainty of the position of transmitter and receiver. Using the measurements from this interval results in poor target tracking performance. In this paper, an improved tracking performance for the proposed data association based multiple model algorithm is validated by a monte carlo simulation.

Analysis of Performance for Entropy-Based ISAR Autofocus Technique (엔트로피 기반의 ISAR 자동 초점 기법에 대한 성능 분석)

  • Bae, Jun-Woo;Kim, Kyung-Tae;Lee, Jin-Ho;Im, Jeong-Heom
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1249-1258
    • /
    • 2006
  • Two-dimensional(2-D) radar images, namely, ISAR images from a maneuvering target include unwanted phase errors due to the target's motion. These phase errors make ISAR images to be blurred. The ISAR autofocus technique is required in order to remove these unwanted phase errors. Unless those unwanted phase errors produced by the target's motion are removed prior to target identification, we cannot expect a reliable target identification performance. In this paper, we use the entropy-based ISAR autofocus technique which consists of two steps: range alignment and phase adjustment. We analyze a relationship between the number of sampling point and a image quality in a range alignment algorithm and also analyze a technique for reducing computation time of the SSA(Stage-by-Stage Approachng) algorithm in a phase adjustment.

A robust data association gate method of non-linear target tracking in dense cluttered environment (고밀도 클러터 환경에서 비선형 표적추적에 강인한 자료결합 게이트 기법)

  • Kim, Seong-Weon;Kwon, Taek-Ik;Cho, Hyeon-Deok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.109-120
    • /
    • 2021
  • This paper proposes the H∞ norm based data association gate method to apply robustly the data association gate of passive sonar automatic target tracking which is on non-linear targets in dense cluttered environment. For target tracking, data association method selects the measurements within validated gate, which means validated measuring extent, as candidates for the data association. If the extent of the validated gate in the data association is not proper or the data association executes under dense cluttered environment, it is difficult to maintain the robustness of target tracking due to interference of clutter measurements. To resolve this problem, this paper proposes a novel gating method which applies H∞ norm based bisection algorithm combined with 3-σ gate method under Gaussian distribution assumption and tracking error covariance. The proposed method leads to alleviate the interference of clutters and to track the non-linear maneuvering target robustly. Through analytic method and simulation to utilize simulated data of horizontal and vertical bearing measurements, improvement of data association robustness is confirmed contrary to the conventional method.

Estimation of the property of small underwater target using the mono-static sonar (단상태 소나를 이용한 소형 수중표적 물성추정)

  • Bae, Ho Seuk;Kim, Wan-Jin;Lee, Da-Woon;Chung, Wookeen
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.293-299
    • /
    • 2017
  • Small unmanned platforms maneuvering underwater are the key naval future forces, utilized as the asymmetric power in war. As a method of detecting and identifying such platforms, we introduce a property estimation technique based on an iterative numerical analysis. The property estimation technique can estimate not only the position of a target but also its physical properties. Moreover, it will have a potential in detecting and classifying still target or multiple targets. In this study, we have conducted the property estimation of an small underwater target using the data acquired from the lake experiment. As a result, it shows that the properties of a small platform may be roughly estimated from the in site data even using one channel.

Maneuvering Target Tracking With 3D Variable Turn Model and Kinematic Constraint (3D 가변 선회 모델 및 기구학적 구속조건을 사용한 기동표적 추적)

  • Kim, Lamsu;Lee, Dongwoo;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.881-888
    • /
    • 2020
  • In this paper, research on estimation of states of a target of interest using Line Of Sight(LOS) angle measurement is performed. Target's position, velocity, and acceleration are chosen to be the states of interests. The LOS measurement is known to be highly non-linear, making target dynamic modeling hard to be implemented into a filter. To solve this issue, the Pseudomeasurement equation was applied to the LOS measurement equation. With the help of this equation, 3D variable turn target dynamic model is applied to the filter model. For better performance, Kinematic Constraint is also implemented into the filter model. As for the filter, Bias Compensation Pseudomeasurement Filter (BCPMF) is used which is known for its robustness to initial conditions. Moreover, Two-Stage Kalman Filter (TSKF) form was also implemented to benefit from the parallel computation. As a result, TBCPMF 3DVT-KC is proposed and simulated to assess performance.

Improvement of Radar Images Using Time-Frequency Transform (시간-주파수 영역 해석법을 이용한 레이더 영상 품질 개선에 대한 연구)

  • Jung, Sang-Won;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • In this paper, an efficient algorithm is developed to perform target rotational motion compensation to achieve the clear inverse synthetic aperture radar(ISAR) image. The algorithm is based on a time-frequency technique. This algorithm provides an efficient method to resolve the blurring image caused by the time-varying behavior of the target scattering centers and leads to a well-focused ISAR image. Results demonstrate that the time-frequency techniques can improve the blurring ISAR image when an aircraft is in complex motion, such as maneuvering, rotation and acceleration.

A Study on RCS and Scattering Point Analysis Based on Measured Data for Maritime Ship (실측자료 기반 함정 RCS 측정 및 산란점 분석 연구)

  • Jung, Hoi-In;Park, Sang-Hong;Choi, Jae-Ho;Kim, Kyung-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.97-105
    • /
    • 2020
  • In order to set up radar cross section(RCS) reduction factors for a target, the scattering point position of the target should be identified through inverse synthetic aperture radar(ISAR) image analysis. For this purpose, ISAR image focusing is important. Maritime ship is non-linear maneuvering in the sea, however, which blur the ISAR image. To solve this problem, translational and rotational motion compensation are essential to form focused ISAR image. In this paper, hourglass and ISAR image analysis are performed on the collected data in the sea instead of using the prediction software tool, which takes much time and cost to make computer-aided design(CAD) model of the ship.