• Title/Summary/Keyword: malware defense

Search Result 38, Processing Time 0.024 seconds

The Analysis of the Malware Trend and the Prediction on the Defense Service and Industry (Malware 동향 분석과 향후 예측 - 국방기관 및 방산분야를 중심으로 -)

  • Choi, Junesung;Kook, Kwangho
    • Convergence Security Journal
    • /
    • v.12 no.4
    • /
    • pp.97-108
    • /
    • 2012
  • In this study, we analysis the distributing malware using email on the korean defense service and defense industry as the social engineering attack. E-mail attack distributes the document files with the malware. Using the malware, attacker get the Information of the targeted people and devices. we proposed expected new types of attacks by analysis and transformation. And, expect the new email attack agendas which will be tried.

BM3D and Deep Image Prior based Denoising for the Defense against Adversarial Attacks on Malware Detection Networks

  • Sandra, Kumi;Lee, Suk-Ho
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.163-171
    • /
    • 2021
  • Recently, Machine Learning-based visualization approaches have been proposed to combat the problem of malware detection. Unfortunately, these techniques are exposed to Adversarial examples. Adversarial examples are noises which can deceive the deep learning based malware detection network such that the malware becomes unrecognizable. To address the shortcomings of these approaches, we present Block-matching and 3D filtering (BM3D) algorithm and deep image prior based denoising technique to defend against adversarial examples on visualization-based malware detection systems. The BM3D based denoising method eliminates most of the adversarial noise. After that the deep image prior based denoising removes the remaining subtle noise. Experimental results on the MS BIG malware dataset and benign samples show that the proposed denoising based defense recovers the performance of the adversarial attacked CNN model for malware detection to some extent.

Bidirectional LSTM based light-weighted malware detection model using Windows PE format binary data (윈도우 PE 포맷 바이너리 데이터를 활용한 Bidirectional LSTM 기반 경량 악성코드 탐지모델)

  • PARK, Kwang-Yun;LEE, Soo-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.87-93
    • /
    • 2022
  • Since 99% of PCs operating in the defense domain use the Windows operating system, detection and response of Window-based malware is very important to keep the defense cyberspace safe. This paper proposes a model capable of detecting malware in a Windows PE (Portable Executable) format. The detection model was designed with an emphasis on rapid update of the training model to efficiently cope with rapidly increasing malware rather than the detection accuracy. Therefore, in order to improve the training speed, the detection model was designed based on a Bidirectional LSTM (Long Short Term Memory) network that can detect malware with minimal sequence data without complicated pre-processing. The experiment was conducted using the EMBER2018 dataset, As a result of training the model with feature sets consisting of three type of sequence data(Byte-Entropy Histogram, Byte Histogram, and String Distribution), accuracy of 90.79% was achieved. Meanwhile, it was confirmed that the training time was shortened to 1/4 compared to the existing detection model, enabling rapid update of the detection model to respond to new types of malware on the surge.

A Study on the Image-Based Malware Classification System that Combines Image Preprocessing and Ensemble Techniques for High Accuracy (높은 정확도를 위한 이미지 전처리와 앙상블 기법을 결합한 이미지 기반 악성코드 분류 시스템에 관한 연구)

  • Kim, Hae Soo;Kim, Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.7
    • /
    • pp.225-232
    • /
    • 2022
  • Recent development in information and communication technology has been beneficial to many, but at the same time, malicious attack attempts are also increasing through vulnerabilities in new programs. Among malicious attacks, malware operate in various ways and is distributed to people in new ways every time, and to solve this malware, it is necessary to quickly analyze and provide defense techniques. If new malware can be classified into the same type of malware, malware has similar behavioral characteristics, so they can provide defense techniques for new malware using analyzed malware. Therefore, there is a need for a solution to this because the method of accurately and quickly classifying malware and the number of data may not be uniform for each family of analyzed malware. This paper proposes a system that combines image preprocessing and ensemble techniques to increase accuracy in imbalanced data.

Light-weight Classification Model for Android Malware through the Dimensional Reduction of API Call Sequence using PCA

  • Jeon, Dong-Ha;Lee, Soo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.123-130
    • /
    • 2022
  • Recently, studies on the detection and classification of Android malware based on API Call sequence have been actively carried out. However, API Call sequence based malware classification has serious limitations such as excessive time and resource consumption in terms of malware analysis and learning model construction due to the vast amount of data and high-dimensional characteristic of features. In this study, we analyzed various classification models such as LightGBM, Random Forest, and k-Nearest Neighbors after significantly reducing the dimension of features using PCA(Principal Component Analysis) for CICAndMal2020 dataset containing vast API Call information. The experimental result shows that PCA significantly reduces the dimension of features while maintaining the characteristics of the original data and achieves efficient malware classification performance. Both binary classification and multi-class classification achieve higher levels of accuracy than previous studies, even if the data characteristics were reduced to less than 1% of the total size.

CNN-based Android Malware Detection Using Reduced Feature Set

  • Kim, Dong-Min;Lee, Soo-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.19-26
    • /
    • 2021
  • The performance of deep learning-based malware detection and classification models depends largely on how to construct a feature set to be applied to training. In this paper, we propose an approach to select the optimal feature set to maximize detection performance for CNN-based Android malware detection. The features to be included in the feature set were selected through the Chi-Square test algorithm, which is widely used for feature selection in machine learning and deep learning. To validate the proposed approach, the CNN model was trained using 36 characteristics selected for the CICANDMAL2017 dataset and then the malware detection performance was measured. As a result, 99.99% of Accuracy was achieved in binary classification and 98.55% in multiclass classification.

Malwares Attack Detection Using Ensemble Deep Restricted Boltzmann Machine

  • K. Janani;R. Gunasundari
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.64-72
    • /
    • 2024
  • In recent times cyber attackers can use Artificial Intelligence (AI) to boost the sophistication and scope of attacks. On the defense side, AI is used to enhance defense plans, to boost the robustness, flexibility, and efficiency of defense systems, which means adapting to environmental changes to reduce impacts. With increased developments in the field of information and communication technologies, various exploits occur as a danger sign to cyber security and these exploitations are changing rapidly. Cyber criminals use new, sophisticated tactics to boost their attack speed and size. Consequently, there is a need for more flexible, adaptable and strong cyber defense systems that can identify a wide range of threats in real-time. In recent years, the adoption of AI approaches has increased and maintained a vital role in the detection and prevention of cyber threats. In this paper, an Ensemble Deep Restricted Boltzmann Machine (EDRBM) is developed for the classification of cybersecurity threats in case of a large-scale network environment. The EDRBM acts as a classification model that enables the classification of malicious flowsets from the largescale network. The simulation is conducted to test the efficacy of the proposed EDRBM under various malware attacks. The simulation results show that the proposed method achieves higher classification rate in classifying the malware in the flowsets i.e., malicious flowsets than other methods.

DroidVecDeep: Android Malware Detection Based on Word2Vec and Deep Belief Network

  • Chen, Tieming;Mao, Qingyu;Lv, Mingqi;Cheng, Hongbing;Li, Yinglong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2180-2197
    • /
    • 2019
  • With the proliferation of the Android malicious applications, malware becomes more capable of hiding or confusing its malicious intent through the use of code obfuscation, which has significantly weaken the effectiveness of the conventional defense mechanisms. Therefore, in order to effectively detect unknown malicious applications on the Android platform, we propose DroidVecDeep, an Android malware detection method using deep learning technique. First, we extract various features and rank them using Mean Decrease Impurity. Second, we transform the features into compact vectors based on word2vec. Finally, we train the classifier based on deep learning model. A comprehensive experimental study on a real sample collection was performed to compare various malware detection approaches. Experimental results demonstrate that the proposed method outperforms other Android malware detection techniques.

Enhanced Method for Preventing Malware by Detecting of Injection Site (악성코드 인젝션 사이트 탐지를 통한 방어효율 향상방안)

  • Baek, Jaejong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1290-1295
    • /
    • 2016
  • Recently, as mobile internet usage has been increasing rapidly, malware attacks through user's web browsers has been spreading in a way of social engineering or drive-by downloading. Existing defense mechanism against drive-by download attack mainly focused on final download sites and distribution paths. However, detection and prevention of injection sites to inject malicious code into the comprised websites have not been fully investigated. In this paper, for the purpose of improving defense mechanisms against these malware downloads attacks, we focus on detecting the injection site which is the key source of malware downloads spreading. As a result, in addition to the current URL blacklist techniques, we proposed the enhanced method which adds features of detecting the injection site to prevent the malware spreading. We empirically show that the proposed method can effectively minimize malware infections by blocking the source of the infection spreading, compared to other approaches of the URL blacklisting that directly uses the drive-by browser exploits.

MalDC: Malicious Software Detection and Classification using Machine Learning

  • Moon, Jaewoong;Kim, Subin;Park, Jangyong;Lee, Jieun;Kim, Kyungshin;Song, Jaeseung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1466-1488
    • /
    • 2022
  • Recently, the importance and necessity of artificial intelligence (AI), especially machine learning, has been emphasized. In fact, studies are actively underway to solve complex and challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI security systems, and AI surgical robots. Information security that involves analysis and response to security vulnerabilities of software is no exception to this and is recognized as one of the fields wherein significant results are expected when AI is applied. This is because the frequency of malware incidents is gradually increasing, and the available security technologies are limited with regard to the use of software security experts or source code analysis tools. We conducted a study on MalDC, a technique that converts malware into images using machine learning, MalDC showed good performance and was able to analyze and classify different types of malware. MalDC applies a preprocessing step to minimize the noise generated in the image conversion process and employs an image augmentation technique to reinforce the insufficient dataset, thus improving the accuracy of the malware classification. To verify the feasibility of our method, we tested the malware classification technique used by MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet & Security Agency (KISA). Consequently, an accuracy of 97% was achieved.