
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May. 2022 1466
Copyright ⓒ 2022 KSII

http://doi.org/10.3837/tiis.2022.05.004 ISSN : 1976-7277

MalDC: Malicious Software Detection and
Classification using Machine Learning

Jaewoong Moon1, Subin Kim1, Park Jangyong1, Jieun Lee1, Kyungshin Kim2,

and Jaeseung Song1*
1 Sejong University

209, Neungdong-ro, Gwangjin-gu, Seoul KR
[e-mail: jwmoon10@gmail.com, spdlqj99099@gmail.com, jkff1@naver.com, love9ly@gmail.com,

jssong@sejong.ac.kr]
2 Convergence Technology Collaboration Directorate, Agency for Defense Development, Songpa P.O Box 132,

Seoul KR
[e-mail: updatekim@add.re.kr]

*Corresponding author: Jaeseung Song

Received March 8, 2022; accepted April 4, 2022;
published May 31, 2022

Abstract

Recently, the importance and necessity of artificial intelligence (AI), especially machine
learning, has been emphasized. In fact, studies are actively underway to solve complex and
challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI
security systems, and AI surgical robots. Information security that involves analysis and
response to security vulnerabilities of software is no exception to this and is recognized as one
of the fields wherein significant results are expected when AI is applied. This is because the
frequency of malware incidents is gradually increasing, and the available security technologies
are limited with regard to the use of software security experts or source code analysis tools.
We conducted a study on MalDC, a technique that converts malware into images using
machine learning, MalDC showed good performance and was able to analyze and classify
different types of malware. MalDC applies a preprocessing step to minimize the noise
generated in the image conversion process and employs an image augmentation technique to
reinforce the insufficient dataset, thus improving the accuracy of the malware classification.
To verify the feasibility of our method, we tested the malware classification technique used by
MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet
& Security Agency (KISA). Consequently, an accuracy of 97% was achieved.

Keywords: artificial intelligence, machine learning, malware classification, MalDC

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1467

1. Introduction

In recent years, with the rapid dissemination of the Internet and improvement in the
performance of computers, different types of software are being used in various areas of human
life; however, the side effects of using computers are also increasingly rapidly. For example,
in the case of service disruption through distributed denial-of-service (DDoS) attacks and
leakage of private information through hacking, users experience various types of damages.
Most of such hacking attacks are due to malware attacking vulnerabilities that exist in normal
software, and the subsequent damage to users continues to increase every year. According to
“The 2014 Internet Intrusion Response Plan” of the Korea Internet Security Center, Korea
Internet & Security Agency (KISA), the average daily appearance of malware increased from
1,435 types in 2013 to 8,847 types in 2014, which is an approximate six-fold rise over a year.
Furthermore, according to AVTEST, an IT security research organization, the number of
malware incidents reported annually has increased by ~12 times in ten years from 99.71
million cases in 2012 to 1.18063 billion cases in 2021 [1, 2].

One of the main reasons for the sharp increase in software-infecting malware is the use of
automation tools by hackers for the rapid creation of similar or variant malware. Malware
created using automated tools change only the encrypted code part or perform entry point
obscuring (EPO) attacks that change the code at the entry point part of the software, thereby
changing only the form of software although the type of malicious behavior remains the same.
Based on this, they avoid detection by vaccines. The number of similar and variant malware
is surging due to the spread of the software-modification-based polymorphic attack method,
and techniques to interfere with the analysis of software are also being developed [3].

Machine learning (ML) is a field of artificial intelligence (AI) [4] and refers to a technique
that trains the computer using data so that it can create new rules on its own and make decisions
without any help from humans. In other words, ML involves the creation of sophisticated
algorithms to analyze learned data in order to find and learn specific patterns. ML is used in
different areas in real life, such as autonomous vehicle control, various services based on
natural language processing, and robotic surgery. In particular, ML has shown excellent results
when solving certain problems by learning images. For example, ML can be used to detect
dangerous objects or terrorist threats in advance through the analysis of images captured on a
closed-circuit television (CCTV) and to restore the pixels of old photographs or the colors of
black and white photographs [5, 6].

Attempts to use ML in the field of information security have also been made in recent years.
With the advancement of various information and communication technologies, hacking
techniques are becoming increasingly sophisticated and complex, causing more damage than
before. In previous cyberattacks, intrusion detection and attack analysis could be performed
by just using the pattern matching method based on the analysis of conventional attack patterns
[7]. Currently, however, the simple pattern matching method alone can no longer be used to
detect advanced cyberattacks because of the use of various smart devices and software.
Furthermore, cases of cyberattacks using AI have been recently identified, and the defense
strategy using some white hat experts is no longer sufficient to block advanced intelligent
cyberattacks. Therefore, new technology should be developed by applying AI to the field of
information security, such as network intrusion detection, malware analysis, and vulnerability
analysis, to respond to intelligent cyberattacks, which are difficult to detect by experts or
conventional hacking defense tools.

In the case of cyberattacks using malware, many recent attacks have used concealed
malware to collect and leak important data by bypassing security systems to prevent users

1468 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

from being aware of it. Malware poses a major threat to the security of computer systems. As
malware becomes increasingly complex and large, it has become increasingly difficult to deal
with malware [1]. Because of the rapid spread of malware, the number of signature patterns
found by analyzing the patterns of new malware released every year is rapidly increasing. The
frequency and processing capability of malware incidents have exceeded human limits.
Previously, static analysis and dynamic analysis were used to identify malware hidden inside
normal software. However, because conventional analysis methods execute code for analysis,
they have a limitation in that the analysis is not effective in terms of the time efficiency or due
to code obfuscation. Recently, studies on the development of relevant technology, through the
application of AI to the field of malware detection, are being actively conducted [8].

In this study, we propose a malicious software detection and classification (MalDC)
framework to classify malware with the same or similar attack patterns. To this end, we
constructed a learning dataset by representing the malware in the form of images and trained
the ML to use image analysis techniques. Note that our method showed good performance [9].
The developed ML algorithms and learning dataset can be used to discover newly appearing
malware easily and quickly to prevent or minimize the damage caused by hacking. For the
successful performance of ML, high-quality learning data are required. Therefore, in this study,
we used the Kaggle data provided by Microsoft [10] and malware data collected by KISA [11]
as the learning data and succeeded in effectively classifying the malware. Furthermore, to
obtain the learning dataset sufficiently and remove noise, training was performed using the
image dataset and the fine-tuning method of a convolutional neural network (CNN)-based
inception model was used [12, 13]. Further, the algorithm’s accuracy was improved by
sufficiently increasing the image dataset for learning using a data augmentation method. Based
on these techniques and procedures, a malware classification success rate of 97% was finally
achieved.

The research contributions of this study are as follows:
• A system architecture was designed and developed to classify malware by training the

ML model with malware converted into images.
• Techniques were developed to convert malware into images and increase the amount of

training data.
• MS Kaggle and the malware dataset provided by KISA were used to develop the ML

model and validate the effectiveness of the malware classification technique.
The remainder of this paper is organized as follows. Section II reviews related work and

explains the concept and technology of CNN models—a typical ML method—as background
knowledge to improve the understanding of the proposed technique. Section III introduces the
proposed ML-based malware classification framework. Then, Section IV focusses on the
technique of converting malware into images and the method of expanding the learning dataset.
Section V provides the analysis and results for the malware classification experiments using
the MS Kaggle and KISA malware datasets. Finally, Section VI presents the conclusions and
discusses the future research direction.

2. Background and Related Work
This section introduces the basic ML and image classification techniques required to

understand the proposed ML-based malware classification method and describes existing
studies related to malware classification.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1469

2.1 ML
ML refers to the computing capability that facilitates learning without explicit

programming. It is mainly used for classification and prediction, and the training of the ML
model is performed using training data. Furthermore, it requires an exact target variable, i.e.,
explicit reaching point, from a certain domain (predicted dependent variable). Therefore,
results vary depending on the relationship between the type and form of input data and the
target variable [14].

ML refers to the task of finding the optimal parameter values to most accurately predict the
solution for a particular problem. In general, therefore, ML aims to minimize errors for new
samples that are not in the training dataset after going through three stages of training,
validation, and testing. The following shows brief definitions of the three stages of ML applied
in this paper.
• Stage 1 (Training): It is the stage where an optimal state is reached while improving the

performance and is called learning or training. This stage is highly affected by the
performance of the computer system used.

• Stage 2 (Validation): It is the stage where classification using the CNN is performed after
the training is complete. Individual files can be used, or a bundle of multiple files can be
used.

• Stage 3 (Test): The classification accuracy at the file level in the validation stage and the
statistics obtained from various processes are summarized. It is a process of predicting the
target value for a “new” sample that is not in the training dataset. In this stage, data that
have new samples are called the test dataset, and the properties that have high performance
for the test dataset exhibit a generalization ability.

2.2 Convolutional Neural Network (CNN) Model
CNNs are mainly used in the fields of image recognition, image processing, and computer

vision. A CNN is a neural network model that performs an additional image preprocessing
task referred to as convolution [14, 15]. While conventional image learning methods provide
raw pixel values of images to learn each feature, a CNN receives an original image as-is and
learns the features of that image while maintaining its spatial/local information. CNN models
have evolved continuously, and several different types of CNN architectures have been
developed. A CNN focuses on and utilizes parts of the image rather than the entire image as
well as the relationship between the pixels that constitute the image. It has been used in several
studies owing to its desirable performance in image pattern analysis. ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) is a challenge competition that provides a
representative large-scale classification dataset and provide brief descriptions of the four
different CNN architectures that have shown excellent performance in the literature.
• AlexNet: This architecture was proposed in 2012 and has shown an improved recognition

accuracy compared to all existing ML and computer vision approaches. It is a
breakthrough method in the fields of ML and computer vision for visual recognition and
classification tasks and has sparked a surge of interest in deep learning [16].

• VGGNET: This method was introduced in 2014 and demonstrated that the depth of the
network is an important factor affecting the recognition accuracy of a CNN. The VGG
architecture has a deeper structure than the AlexNet and uses the ReLU activation function.
It also uses a single maximum pooling layer and several fully connected ReLU activation
functions. The model’s final layer is a SoftMax layer, which performs the classification.

1470 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

Essentially, after stacking convolutional layers of 3×3 in overlaps, the ReLU functions
are used.

• ResNet: This architecture was introduced in 2015 and consists of deeper layers that the
ones mentioned above. Variants of the ResNet model have been developed with different
depths of layers, such as 24, 50, 101, 152, and 1,202 layers. Among them, the most popular,
ResNet-50, consists of 49 convolutional layers and one fully-connected layer. To solve
the problem of learning becoming more complex as the depth of the network increases, a
concept called skip connection was proposed in the ResNet, which caused a reduction in
the complexity [17].

• Inception: Inception is an architecture that has evolved several times from V1 called
GoogLeNet in 2014 to V4 developed in 2015. As the learning architecture commonly has
a greater width and depth, the performance of this model is the most desirable of the ones
mentioned above. However, during training performed, problems such as overfitting
occur, and it can be said that a greater width and depth are not always beneficial for an
improved performance. Inception successfully implemented an architecture that could
lead to maximum performance without compromising performance [3].

2.3 Image Classification Algorithm
Classifying objects in the form of images into available categories is one of the common

functions of computer vision. Image classification can be performed using Histogram of
Oriented Gradients (HOG) or Scale-Invariant Feature Transform (SIFT), and if there are
defined categories, the classifier is used to classify the input image as one of the appropriate
categories [19]. In recent years, feature extraction and classification have been performed by
a single deep learning classifier model, which showed better accuracy than conventional image
classification methods. In particular, ML is used in various areas related to image classification.
Esteban et al. proposed AmoebaNet-A, an image classification CNN that, for the first time,
surpassed the designs proposed by humans. (Later on, improved versions, AmoebaNet-B, C,
and D were additionally proposed.) By introducing an age property to favor the younger
genotypes, they modified the evolutionary algorithms applied in tournament selection.
AmoebaNet-A discovered parameters and network architectures using more complex
architecture search methods. Furthermore, it had comparable accuracy to the latest ImageNet
models while maintaining similar parameter sizes; furthermore, in an AmoebaNet architecture
of a larger size, it performed with a top-5 error rate of 3.4% [20, 21].

Kaiming et al. developed a network called ResNet that achieved a top-5 error rate of 3.57%
in ImageNet tasks with an ensemble structure by stacking 152 layers—more than eight times
deeper than the existing VGG16 network. The authors proposed a concept called skip
connection and a network of deep structure. AlexNet, VGGNet, and GoogLeNet transformed
feature maps through convolutional layers, but ResNet is trained with convolution operations
using the values added to the inputs. ResNet with an architecture of up to 152 layers was
proposed, and later, a deep architecture with 1,002 layers was announced [22]. ResNet’s CNN
has been used variously as a basic CNN in the object detection field and showed superior
performance in faster-RCNN-based detectors [22].

In addition, Howard et al. developed a MobileNet method based on a streamlined
architecture using convolution layers divided in the depth direction. MobileNet was different
from common convolution methods in that convolution was applied to each channel, after
which a 1 × 1 convolution was applied for operations between the channels. In other words,
this can be viewed as a convolution for each channel + a factorized convolution between 1 ×
1 channels, whereas it is a common operation to apply the convolution to the whole. This

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1471

method was proven to be favorable in terms of parameters and speed compared to conventional
methods [23]. Furthermore, Huang et al. developed DenseNet, a ResNet-based variant. ResNet
applies the skip connection to the next layer only, but DenseNet has a structure that applies
the skip connection to all layers. DenseNet has the following advantages: it (1) alleviates the
gradient vanishing problem, (2) strengthens feature propagation, (3) encourages feature reuse,
and (4) reduces the number of parameters [24].

2.4 Research on Application of Malware-related AI
Because the effectiveness of manual inspection is poor compared to the high spread rate of

malware, studies on AI application to malware analysis are actively underway[25, 26, 27, 28,
29]. A study was conducted at the Berlin Institute of Technology to apply ML to malware’s
behavior-based analysis [5], and research was conducted at the Swiss German University to
detect malware based on ML technology by constructing a sandbox and automatically
analyzing the malware’s behaviors and generating reports. As such, many organizations have
been conducting research to apply AI technology to malware [7, 22, 30].

In particular, many studies have recently used AI and ML to detect malware of EXE and
PE types [31]. Nvincea Labs in the U.S. conducted research on malware detection methods
using deep neural networks (DNNs). After extracting features, such as string 2D histogram
and portable executable (PE) import tables and PE metadata, from malicious/normal programs,
they applied a method of learning them using DNNs. Furthermore, the DNN model used in
the study consisted of one input/output layer and two or more hidden layers that had 1,024
nodes and showed that malware could be classified through one output produced through the
model [20]. This research was conducted at CQVista on a non-signature-based malware
detection method that facilitates real-time detection while providing high detection rates by
extracting raw features of PE files and applying a decision tree algorithm to the results of
calculating the information gain (IG) of the extracted features [21]. Furthermore, research was
conducted at Maryland University on a method of detecting malware by training a deep
learning model with the byte information of files to detect malware of Windows executable
files (.exe). For learning byte information using deep learning, a gate structure that performs
two convolutional operations was applied to the CNN, and a structure for normal/malicious
software classification was added to conduct the training and classification [23].

3. MalDC: Intelligent Malware Classification Framework Design
This section describes the system architecture of MalDC, a Malicious Software Detection

and Classification framework. In this study, we represented malware binaries as images and
treated the malware classification problem as a problem of classifying images. Conventional
malware analysis and detection techniques must analyze in detail or execute malware at the
code level. In the case of MalDC, however, because malware is converted into images and
then classified through ML, there is an advantage in that it facilitates accurate classification
without execution and detailed analysis of code.

3.1 MalDC Overview
Fig. 1 shows the architecture of the MalDC system. MalDC is executed using a binary

malware dataset as an input. The binary malware dataset consists of a training dataset used to
train the model and a testing dataset used to validate the model. The training data are converted
into images to train the ML model. Noise is removed from the created malware images, which
then moves through the preprocessing process to increase the training effect. The malware

1472 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

images for training are used as inputs for the training of the ML model for malware
classification, based on which the initial model is developed. The performance of the
developed malware classification model is assessed using the testing malware dataset. If a
certain level of performance is not achieved, a process of modifying the model is performed
by retraining the model after changing the parameters, and testing is performed again. If a
certain level of performance is achieved, a model to be used in MalDC is finally produced.
The developed malware classification can be used to classify existing malware or check if the
software suspected of being malware is indeed malware. The following section describes the
stages performed repeatedly in the proposed system.
• Imaging Malware: MalDC visualizes malware binaries as gray-scale images. Patterns that

show edges of the objects existing in an image are required when learning images, and
gray-scale images consist of brightness values without color information. Therefore, ML
algorithms can check the patterns of the objects included in gray-scale images faster and
more efficiently, compared to those in color images. In case of many malware families
and variant families, images belonging to the same family look very similar in terms of
layouts and textures. Therefore, MalDC uses a classification method that uses standard
image features, motivated by these visual similarities. Obviously, this classification
method has the advantage that direct analysis of source code or execution of code is not
required, unlike static and dynamic analysis.

• Image pre-processing: After converting malware into images, it is necessary to remove
noise, label images, and expand the image dataset to achieve the best performance in ML.
For example, in a study conducted at the University of California, Santa Barbara, ML’s
performance was improved by obtaining a large dataset by enlarging or reducing the
image size or changing the width of images in the same rectangular shape. MalDC also
applies several preprocessing processes, such as noise removal and image resizing [20].

• Image data learning and development of an optimal model: MalDC uses a CNN algorithm
specialized in image classification to classify images. During the initial implementation,
we developed the neural network system using Google’s open-source TensorFlow library.
Afterward, the TensorFlow Inception library, which was newly released by Google to
increase the level of image classification accuracy of basic TensorFlow, was applied, and
a malware image classification accuracy of over 90% was achieved.

Fig. 1. MalDC framework architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1473

3.2 Imaging Malware
Fig. 2 shows two different types of malware visualized as images. In this figure, the images

in the first row show three malware instances belonging to the Fakerean family, and the images
in the second-row show Dontovo malware-based families [21]. Fakerean is malware that
appeared around 2010 and is registered with the Microsoft Malware Protection Center
(MMPC). It has the characteristic of disguising itself as an antivirus by forging the name or
logo. Dontovo is a kind of Trojan horse, which can install malware or software on computers.
Dontovo’s core malware code can be ported by hackers to other software. In this case, it is
recognized as another software in the external shape, but abnormal activities that actually
occur are executed by the malicious code part defined in Dontovo. Because images belonging
to the same family have similar visual characteristics, the characteristics of images can be used
to classify the family.

Fig. 2. Various sections that constitute Dontovo A malware

The samples belonging to the same family can be distinguished because they are visually

similar. In contrast, images of malware that belong to different families show distinctly
different patterns. This is because new malware is created through a method of copying the
behavior and features of existing malware and applying them to new software, rather than
developing malware from scratch when creating malware. In other words, malware can be
classified using computer vision technology that facilitates image-based classification because
of the visual similarities of such malware images. In MalDC, malware classification and
discrimination are performed based on the image visualization similarities of malware of the
same family.

In MalDC, the malware binaries given for the visualization of malware are constructed in
a 2D array which is read as vectors of unsigned 8-bit integers. They can be easily visualized
in a gray-scale image with a range of [0, 255] (0: black, 255: white). The image’s width is
fixed, and the height may vary depending on the file size.

Fig. 3 shows a gray-scale image example converted from binaries of downloader Dontovo
A, a type of Trojan horse that downloads and executes arbitrary files. In most malware images,
several different sections (binary fragments) exist, and each section shows a unique image
texture. Dontovo A malware consists of a total of four sections: .text, .rdata, .data, and .rsrc.
The .text section has executable code. In Fig. 3, the first part of the .text section contains code
with a sub-divided texture. The remaining part is filled with zeros, and the end of this part is

1474 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

also filled with zeros. Next, the .data section contains uninitialized code (black patch) and
initialized data (detailed texture). The last section is .rsrc, which contains all resources of the
module. It can also include an icon that can be used by the application. When malware is
represented as an image, various sections of software have different patterns in the image.

Fig. 3. Classification of malware images by family

3.3 MalDC ML Algorithm and Configuration
To learn and classify images through ML, an appropriate ML algorithm must be selected

for the problem to be solved, and various parameters related to the training must be set.
ML Algorithm: We developed a model by selecting Inception, which shows the best
performance and is specialized in image classification among ML open-source libraries, to
learn and classify malware images using ML in MalDC.

Inception is an ML technique for computer vision developed by Google. GoogLeNet won
first with V1 in a global image recognition challenge in 2014, and currently, V4 was released.
The field with the highest utilization of Inception technology is the medical image analysis
field. Google Health’s medical imaging team has revealed that AI developed based on
Google’s computer vision technology has reached such a level that diabetic retinopathy can
be diagnosed using AI. The AI system using Inception diagnosed diabetic retinopathy
accurately, recording an F-score of 0.95 (the maximum is 1)—which is slightly higher than
0.91, the average of eight doctors—considering the sensitivity and specificity required for
diagnosis. Inception models can be classified into the from-scratch method and fine-tuning
method according to the training method [22].
• From-scratch method: As the name suggests, images to be classified are converted into

images that can be recognized by ML, and after going through the training process, they
are stored in the neural network. This is followed by the classification process, but the
accuracy is lower than that of the fine-tuning method, in which the training process is
performed once more with the training results.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1475

• Fine-tuning method: The exact meaning of this method can be found in a notation, Fine-
Tune a Pre-Trained Model. Weights are adjusted in the existing training models, or a
preprocessed dataset is created to make a new training model. It is feasible when
classifying desired images, but images cannot be recognized and learned immediately
during training. Therefore, they are converted in a way that they can be recognized in
ML, and the images and image labels are structured and stored. MalDC uses the fine-
tuning method for high accuracy [7].

Parameter settings: In ML, parameters are variables determined by the model, and their
values are determined from data. Hyper-parameters refer to values that the user sets by
experience when training the model. In MalDC, the following parameters were used.
• Validation: This refers to a proportion of the image learning dataset used for evaluation.

The fitness of the ML algorithm is determined in the following manner. Usually, a
predetermined percentage of the given labeled image group is used for training, and after
using the remaining images for evaluation, the fitness of the algorithm is determined based
on the results. For example, if the validation value is set to 100, X – 100 images out of a
total of X images are used for training, and the remainder, 100 images are used for
evaluation.

• Steps: This is a parameter used in the training stage and provides information that
determines the number of steps to go through when training the ML model and the number
of images to be used each time when training. This is related to the training time. If this
value is large, training takes a long time.

• Batch size: It is a parameter used in both the training and validation stages, and its value
determines how many images will be learned or evaluated in each execution step.

• Learning rate: This refers to the size of the search rate used in the training. For example,
if the learning rate is too large, overshooting may occur, leading to no learning. In contrast,
if the learning rate is too small, the training steps are too small. Thus, even if a very long
time is spent on training, learning does not take place, resulting in very poor accuracy.
Because there is no recommended value for this, the size of the value was tuned up or
down between experiments according to the given input layer’s image characteristics, and
the accuracy was checked.

• Weight decay: This parameter is used as a supplementary factor for the learning rate. If
the learning rate is too small, causing overfitting, one of the solutions may be to make the
learning rate smaller, but in some cases, the weight decay value is tuned to suppress
overfitting. This method is called regulation. In MalDC, the weight decay between
experiments was fixed mostly at 0.00004.

4. MalDC Implementation
This section introduces the development environment settings for the implementation and

experiments using MalDC and the core algorithms of major program modules used in MalDC.

4.1 Equations
In MalDC, TensorFlow and Python 3 were used together to execute ML algorithms. Table

1 shows the development environment required for the construction and operation of MalDC.
Furthermore, we developed the modules required for converting malware into images, learning
the malware images, and evaluating the trained model for malware classification in MalDC.
Table 2 provides a list of the developed modules and brief descriptions of their functions. All

1476 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

modules were developed using Python. The following section describes the execution logic of
each module program.

Table 1. Basic development environment
Windows development environment
• CPU: Intel i7-6700HQ @ 2.6GHz, RAM 8GB
• Windows 10 home 64bit
• GPU: NVIDIA GEFORCE GTX 965M
Linux development environment
• CPU: POWER8 processor, 3.32GHz 2-socket 16-core
• Memory: 128GB
• Ubuntu 16.04.3 ppc64 (Kernel: 4.8.0-36)
• GPU: Two units of K80 (a total of four GPUs)
• DISK: 1TB x 2

Table 2. Basic development environment

Class Applications
Imaging Module

(MalDC-M1)
Performs the function of preparing a training dataset by
downloading and converting malware into TFRecord, the
image format for training.
Module name: malware_imaging.py

Training Module
(MalDC-M2)

Performs the function of developing a model by executing
actual ML using the prepared training dataset of malware
images.
Module name: maldc_training.py

Evaluation
Module

(MalDC-M3)

The accuracy of the model developed based on the training
is measured using the test image dataset.
Module name: maldc_eval.py

4.2 MalDC Modules
MalDC-M1: MalDC-M1 is a module that performs imaging of malware binary files in

MalDC. It receives a malware dataset as input and converts them into images suitable for ML.
Because TFRecord is used as the image format for training in MalDC, MalDC-M1 implements
the function of converting malware code into the TFRecord format. Before converting into
images of malware, MalDC-M1 first checks for normal operation. Three image sets are used
for the initial operation check: cifar10, flowers, and mnist, which are widely used in ML
research. Cifar10 is a dataset comprising 60,000 color images, and each image is labeled as
one of ten classes (airplane, car, bird, cat, deer, dog, frog, horse, ship, and truck). Flowers is a
dataset of flower images classified by five labels. Mnist is a large image database used widely
for training and testing in the ML field. It was created by remixing samples of the original
dataset of NIST. After checking for normal operation first using regular image sets, conversion
into images is performed with the MS Keggle dataset and KISA ransomware dataset.

MalDC-M2: MalDC-M2, a training module, performs image learning using a deep
learning model. As mentioned earlier, there are two main methods of training. The first one is
the “training a model from scratch” method, which means that it is the bottommost method of
image processing. In other words, it is a method of creating a completely new model, not
changing a previously developed model. The second one is the “fine-tuning a model from an
existing checkpoint” method (simply, the “fine-tuning” method), which creates a model by

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1477

training an already well-crafted model with additional images. In MalDC, accuracy
experiments were conducted for the two methods.
• From-scratch method: Training was newly performed with the Inception_V1 model

using the converted malware image set. At the beginning, various settings (e.g., model
name, learning rate, intermediate storage time, and maximum steps) were configured for
model development. Then, after selecting a training dataset, network, and preprocessing
task type, if all settings were complete, the model was developed through actual training.

• Fine-tuning method: The fine-tuning method is a method of learning new images based
on an already created model. When training a “from scratch” model, the Inception_V1
model was used to classify images. In the fine-tuning method, the pre-trained model was
downloaded in ImageNet using the same model for comparison, and the model was
retrained. Thus, a model that recorded an 89.6% accuracy was achieved, which is
ImageNet’s top-5 accuracy. The training process is performed twice in the fine-tuning
method. In Process 1, only the last layer is newly trained in the downloaded model, and
in Process 2, all layers are trained again in the model that has undergone Training Process
1.

MalDC-M3: This helps select an appropriate ML model for malware image classification
by determining the accuracy of the models created in the training module. When a new model
is created, it can be used to classify malware. Malware images that were not used in training
are provided as a test dataset in the model, and classification is performed. By checking
whether the images of malware used in the test were correctly classified, it can verify the
accuracy of the predictions (malware classification in this paper) made by the created model.
If the accuracy is high in the test results, model development is completed. If the accuracy is
not high, the training process is repeated by adjusting the parameters to increase the accuracy.

5. Experiments and Evaluation
This section shows and discusses the experimental results for MalDC. In particular, the

adequacy of the method is determined based on accuracy by applying various approaches, such
as changing the training method, preprocessing data, and tuning the parameters, and the
methods used to improve accuracy are introduced.

5.1 Malware Datasets
The malware datasets applied to the experiments are the Keggle dataset provided by MS,

which consists of 10,868 data with nine labels, and a dataset provided by KISA, which consists
of 689 data with five labels. Table 3 shows the labels of each dataset and the number of data
included for each label. Both the MS and KISA datasets have an imbalance problem in the
minimum number of training images and the number of images for each label, which is a
hurdle in creating high-accuracy models.

Table 3. Information of MS Keggle and KISA Ransomware
Dataset Type Label Quantity Remark

Microsoft Keggle
Dataset

1 1,541
2 2,478

3 2,942
Label with
maximum

data
4 475

1478 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

5 42
Label with
minimum

data
6 751
7 398
8 1,228
9 1,013

Total 10,868

KISA
Ransomware

Dataset

1 293
Label with
maximum

data
2 131

3 23
Label with
minimum

data
4 154
5 88

Total 689

MS’s dataset consists of 10,868 malware data for training, which is small number for
training of ML. Even MNIST, the first practical dataset for ML, consists of more than 20,000
handwriting images. However, more important factors that affect accuracy than the number of
data are the dataset’s quality and the imbalance problem between labels.

In other words, the quantity of data to be learned, the quality of data, and the balance
between the labels in the dataset are the most important factors that determine the accuracy of
the image learning/classifier; however, the MS Keggle dataset and KISA’s dataset do not
satisfy all these three factors. Since the limitation in the amount of data is unavoidable due to
characteristics of malware, unlike regular photographs or facial images, we placed the focus
of the MalDC experiments on finding the model and method that can obtain as high an
accuracy as possible.

In the case of MS Keggle dataset, Label No. 5 consists of a total of 42 files, as shown in
Table 3. There are 2,942 files in the case of Label No. 3, which has the most files, followed
by 2,478 files for Label No. 2. Compared to these, the fact that the label with the minimum
data consists of 42 files means that there is a serious imbalance. The imbalance has a very
significant effect on the accuracy of image classification. Even if the images of Label No. 5
have accurate signatures, it is not easy to perform accuracte classification with only 42 training
data.

5.2 Quality of Datasets
The data in the MS Keggle dataset used in this study are all executable files of the Portable

Executable (PE) format that collected malware. PE files are Windows execution data
representing bytes in the hexadecimal format, and the data contains many undefined bytes
(represented as ??) depending on the file characteristics.

When the content of a normal PE file that does not contain undefined bytes is examined, it
is represented as Fig. 4. It shows the content of the 0akIgwhWHYm1dzsNqBFx.bytes (Label
No. 2) file, one of the malware images. As such, all contents in a normal malware image file
are in normal hexadecimal format. In contrast, there are files that consist of undefined code
(??), which are impossible to represent as hexadecimals.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1479

Fig. 4. Byte structure of normal malware

Fig. 5 shows the content corresponding to the lower part of the image file of the above

malware. The far left side of the figure shows the memory dump address part, and to the right
is a list of 16-byte virus codes. Fig. 5 shows that the contents of all byte codes from the address
005A6C00 to the bottom consist of ??. As such, the question mark (??) part is displayed in the
hexadecimal window when represented as byte code because the virtual address range of
values corresponding to a certain range cannot be known. In the file structure, it is commonly
referred to as the BSS section, and it is used to reflect the static storage requirement of the
program, although the space is not usually secured in the file. Here, the BSS section is a place
created to place the static variables or a part of the program that the compiler did not initialize.
When we checked whether the BSS section represented as ?? was contained in 10,868 files of
the MS Keggle dataset, we found that BSS sections of over 90% were contained.

Fig. 5. Byte structure of abnormal malware with the BSS section

Table 4 shows the result of investigating whether ?? bytes are contained in 10,868 malware

files. Table 4 is a statistics table showing how many malware files contain ?? bytes at the label
level from Label No. 1 to 9. For example, a total of 398 files exist in the case of malware for
Label No. 7, and 323 files contain over 90% of ??. If over 90% is ?? bytes, it is difficult to
expect high accuracy for this file, irrespective of which image learning and classification
system is used. Therefore, to obtain more accurate classification results in MalDC, we
improved the accuracy by tuning various libraries, methods, models, or various parameters.
For the images for quality improvement method, the next section describes the experimental
method in more detail.

1480 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

Table 4. Inclusion of the BSS section
Label 1 2 3 4 5 6 7 8 9

Average(%) 7 2 63 41 69 9 83 23 2
0% 1213 2384 5 23 1 629 38 836 948
10% 270 64 0 28 2 27 0 24 38
20% 21 3 0 45 2 15 13 16 13
30% 10 3 0 69 0 32 18 15 0
40% 9 3 317 130 1 10 5 25 1
50% 1 0 0 177 6 13 1 70 6
60% 1 16 2437 3 5 19 0 90 3
70% 6 2 183 0 7 3 0 134 2
80% 0 1 0 0 14 2 0 18 2
90% 2 2 0 0 4 1 323 0 0

100% 8 0 0 0 0 0 0 0 0
Sum 1541 2478 2942 475 42 751 398 1228 1013

5.3 Training Comparison Between Fine-tuning and From-scratch methods
In the preceding section, we explained the difference between the fine-tuning method and

the from-scratch method before experimenting with the fine-tuning method. The from-scratch
method is a training method of basic CNN, which learns images and evaluates new images
based on the results, whereas the fine-tuning method has emerged recently to increase the
accuracy of image learning using such a neural network.

The fine-tuning method refers to a method for learning the content learned previously again
by leaving a checkpoint while leaving the learning results with the neural network. In general,
the accuracy of the fine-tuning method is high; however, in some cases, the from-scratch
method has a higher accuracy depending on the image’s shape or complexity. In this study,
therefore, we tested both methods and measured the accuracy. This can be viewed as an
experiment for determining which method—the fine-tuning or from-scratch method—is more
suitable for malware image classification.

Table 5 shows various experimental results related to this. In the first experiment, the same
values were given for all parameters, except for the method, and the from-scratch and fine-
tuning methods were applied. In this case, the fine-tuning method showed 52% accuracy,
which was slightly higher than that if the from-scratch method of 50%.

Table 5. Comparative analysis of the fine-tuning and from scratch methods

Experiment

1
(Same

Parameters)

Experiment 2
(Changing

Weight Decay)

Experiment
3

(Changing
Batch Size)

Experiment 4
(Changing Steps)

Category Case
1

Case
2 Case 1 Case 2 Case

1
Case

2
Case

1
Case

2
Case

3

Method Fine
tune

Scrat
ch

Fine
tune

Scratc
h

Scrat
ch

Scrat
ch

Scrat
ch

Scrat
ch

Scrat
ch

Validation 800/
500 800 1000/5

00
1000 500 500 1500 1500 1500

Steps 1000 1000 1000 1000 1500 1500 1500 1500 2600
Batch size 32 32 16 16 16 32 16 16 32

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1481

Learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Weight
decay

0.00
004

0.00
004

0.0000
4

0.0000
1

0.00
004

0.00
004

0.00
004

0.00
004

0.00
004

Result 52% 50% 56% 54% 56% 57% 66% 54% 57%

In the second experiment, images were learned and evaluated by changing only the weight

decay (fine-tuning method: 0.00004 / from-scratch method: 0.00001), one of the important
parameters in ML, under the same conditions as those used in the first experiment. In the
accuracy results of the second experiment, both methods showed an improvement in accuracy
compared to the results of the previous experiment. In contrast, the difference in the
environmental variable did not result in a big difference in accuracy between the two methods.
Like the first experiment, the fine-tuning method showed a accuracy of 56%, which was ~2%
higher than 54% of the from-scratch method.

The third experiment was conducted to examine the change in accuracy by changing the
parameters in the same method. That is, in the experiment of other parameters for the from-
scratch method, the accuracy was examined according to batch size. In Cases 1 and 2, the
batch size was set to 16 and 32, respectively, and the accuracy was found to be slightly higher
when the batch size was larger.

In the fourth experiment, too, the change in accuracy was measured while tuning the Steps
parameter in the same from-scratch method. The accuracy was measured by changing the
Steps to 1,000, 1,500, and 2,600, while all other parameters were fixed. As the value of Steps
increased, accuracy decreased, and an accuracy of 66% was recorded when the value of Steps
was 1,000, showing the highest value among experiments 1 through 4.

In the next section, we detail experiments conducted to measure the accuracy according to
the image shape.

5.4 Experiments Based on Image Shape
The experiments in the preceding section evaluated the accuracy based on the method of

learning images and tuning of various parameters. The from-scratch method had the highest
accuracy of 66% when the value of Steps was set to 1,000. However, since it is impossible to
classify malware adequately with a model with an accuracy of 60%, we examined other
methods that can increase accuracy. First, we experimented with the shape of imaging malware.
In other words, we compared a method of processing with the square shape regardless of the
image size and a method of processing with a rectangular shape of a certain size (e.g., width
is set to 1,024 pixels).

Table 6 shows the results of comparative experimentation with the accuracy after
converting the image’s shape into a square and a rectangle in the process of converting
malware binaries. The model that was evaluated after learning the images of malware
converted into squares showed very little difference from the model evaluated after creating
rectangular images of malware: both showed an accuracy of ~65 to 66%. Based on these
results, we determined that the method used to create the first image with malware has no
significant impact on the accuracy of classification. Therefore, all experiments, thereafter,
were conducted by converting malware into square shapes in the fine-tuning method.

1482 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

Table 6. Accuracy comparison between square and rectangle malware images
 Case 1 Case 2 Note

Type Square Rectangle Rectangle
Methode Scratch Scratch Scratch

Validation 1500 1500 1500
Steps 1000 1000 1000

Batch size 16 16 16
Learning rate 0.01 0.01 0.01
Weight decay 0.00004 0.00004 0.00004

Result 66% 65% 66%

5.5 Accuracy Improvement of the Model
Although we decided to convert malware into square images in the future, because the

accuracy shown in the experiments conducted so far remained in the 60% range, a method that
could improve the classification accuracy of the model was required. Because the BSS section,
i.e., the bytes represented as ??, in malware accounts for a significant portion, it is not easy to
achieve an accuracy of 90% or more.

In the case of BSS sections, the problem can be solved to some extent by replacing the ??
bytes with a specific color. The following explains each method.
• Conversion into black: The black method inserts 0x00 in place of the ?? bytes. If this

method is applied, files with many ?? are mostly displayed as black. As shown below,
files in which almost all bytes are displayed as black correspond to a case in which most
of the existing malware consists of ?? bytes. However, if the proportion of the section
containing ?? is small, it can be used as a signature.

• Conversion into white: The white method inserts 0xFF in place of?? bytes. This method
has a relatively more efficient characteristic than the black method because black (0x00)
is included more than white in the static analysis phase of malware.

• Conversion into specific bits: The specific bit conversion method inserts a certain bit
pattern for each label instead of replacing the ?? byte parts with black or white. For
example, 0x10 is inserted in the ?? parts of the malware having Label No. 1, and 0x20 is
inserted in malware of Label No. 2. Usually, patterns such as lines and planes are
considered more important than the color of the corresponding parts during the processes
of learning and identifying images. Therefore, the bit conversion method is likely to
contribute to improving the accuracy of image classification.

However, it is difficult to expect high accuracy when the quantity of data in the training
dataset is small. To improve the image learning accuracy with a dataset having a small number
of data, the dataset was quantitatively increased by applying a data augmentation technique.
The data augmentation technique creates many converted images with the same label by
applying various methods of image conversion algorithms to the original labeled images. For
example, an image labeled as an apple is rotated to the right by 90° to create a total of four
images. In this study, we applied the following four data augmentation techniques: crop, rotate,
invert, and scale (CRIS) data augmentation techniques.
• Crop: A part of an image is cropped. It is important to crop some pixels on the side so that

the core part of the image is not lost.
• Rotate: The image is rotated by a certain angle. In this study, it was rotated by 90° at a

time to prevent the loss of the core part.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1483

• Invert: The image is inverted; this process is also called flip. By flipping left to right or
top to bottom, data can be obtained without loss of pixels.

• Scale: It is a method of enlarging or reducing the image size. Similar to crop, it is
important to enlarge or reduce in a way that the core part is not lost.

To supplement the part where accuracy does not improve due to the existence of BSS
sections, the dataset collected by KISA was used for CRIS data augmentation. As described
in Section 5.1, the KISA dataset did not have any ?? bytes of the BSS section which was
present in the MS Keggle dataset. This provides good conditions for evaluating accuracy
improvements achieved through data augmentation or parameters without the influence of the
BSS section. However, because the KISA dataset also has a small number of files for
training—less than 700—and a severe imbalance between labels, it is not easy to achieve high
accuracy with conventional ML methods.

In this study, we used CRIS data augmentation to expand the dataset from a total of 689
images to 7,000 images. To examine the relationship between the CRIS method and the
insufficient dataset and find model training methods and strategies that can increase accuracy,
we conducted experiments using various methods. Table 7 shows the results of several
experiments conducted using the KISA ransomware dataset.

Table 7. Experimental results for applying CRIS data augmentation method
 Experiment 1 Experiment 2 Experiment 3

Cases Case 1 Case 1 Case 1 Case 2 Case 3
Method Fine tune Fine tune Fine tune Fine tune Fine tune

Validation 70 700 700 700 700
Steps 1000 / 500 1000 / 500 1000 / 500 5000 / 3000 8000 / 4000

Batch size 64 64 64 64 64
Learning rate 0.01 / 0.001 0.01 / 0.001 0.01 / 0.001 0.01 / 0.001 0.01 / 0.001

Weight
decay 0.00004 0.00004 0.00004 0.00004 0.00004

Model InceptionV1 InceptionV1 InceptionV1 InceptionV1 InceptionV1
Result 50% 82% 82% 82% 82%

In the first experiment, 689 malware files in the KISA dataset were not converted at all and

were applied to the TensorFlow library for learning images. The values of the parameters
applied in the experiment for training were as follows: batch size: 64; Steps: 1,000/500; and
learning rate: 0.01. When 70 images in the test dataset were classified, an accuracy of ~50%
was obtained, as expected. This was not very different from the accuracy obtained by the MS
Keggle dataset that contained BSS sections.

In the second experiment, the number of images for ML was increased to check if the
accuracy had improved. Here, the CRIS data augmentation technique was applied to increase
the insufficient number of images. By applying the CRIS technique, the original images were
expanded to ~7,000 images with the same patterns. In the dataset expanded to a total of 7,000
images, 10%—700 images—were allocated for validation. The parameters applied in the
preceding experiment (64 for the batch size, 1,000/500 for Steps, and 0.01 for the learning rate)
were used for training, and the validation results showed that the image classification accuracy
increased to 82%.

The third experiment was conducted for three cases of changing parameters for the dataset
expanded to 7,000 images using the CRIS technique. Under the same conditions as the second
experiment, the experiment was conducted and accuracy was examined while the learning rate

1484 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

was changed to 1,000, 5,000, and 8,000, and to 500, 3,000, and 4,000 in the secondary training.
Because imbalanced labels exist in the KISA dataset, we could not achieve an accuracy higher
than 82%, which was achieved by increasing the number of data through the CRIS technique.
In other words, we drew a conclusion that a solution is required for imbalanced labels.

In the early stage of developing the malware classification and inspection system using ML,
such an imbalance problem may occur due to insufficient training data. However, this problem
will be solved naturally if many malware data are collected and are used for the system to
learn. To examine the accuracy improvement hindrance caused by the imbalance in the labeled
dataset, we conducted experiments by additionally excluding the imbalanced labeled data in
the dataset.

Previously, Table 3 shows that the data of Label No. 3 and No. 5 are relatively smaller
than those of other labels in the KISA dataset. In other words, the imbalance is severe in the
case of Label Numbers. 3 and 5. In the experiment, therefore, we examined the changes in
accuracy by performing training and validation after removing the imbalanced labeled data
from the dataset.

Table 8 shows the results of experiments conducted by removing the imbalanced data from
the KISA dataset. In the first experiment, the data of imbalanced Label No. 3 were removed.
That is, this experiment excluded Label No. 3, which has the most severely imbalanced files.
In the KISA dataset comprising 689 files, Label No. 3 consists of 23 files. The experiment was
conducted by applying the CRIS data augmentation technique to the dataset of 666 files,
excluding the malware files corresponding to this label, and as a result, an accuracy of 84%
was obtained.

Table 8. Experimental results based on removal of imbalanced labels and application of dynamic
cropping

 Experiment 1
(Only CRIS)

Experiment 2
(removal
label 3)

Experiment 3
(removal

label 3 & 5)

Experiment 3
(Dynamic
Cropping)

Method Fine tune Fine tune Fine tune Fine tune
Validation 600 600 600 600

Steps 1000 / 500 1000 / 500 1000 / 500 1000 / 500
Batch size 64 64 64 64

Learning rate 0.01 / 0.001 0.01 / 0.001 0.01 / 0.001 0.01 / 0.001
Weight
decay 0.00004 0.00004 0.00004 0.00004

Model InceptionV1 InceptionV1 InceptionV1 InceptionV1
Result 82% 84% 87% 97%

Next, the second experiment was conducted by removing imbalanced Label Nos. 3 and 5

at the same time. The dataset of Label No. 5 causes the second-greatest imbalance after the
dataset of Label 3. Label No. 5 consists of a total of 86 malware files, accounting for 12% of
the total malware files. When Label Nos. 3 and 5 are removed at the same time, a total of 109
malware files are excluded from training. Therefore, the model was trained using 580 malware
files consisting of three labels. As a result, the accuracy improved to 87%. This confirms once
again that the existence of imbalanced labels greatly reduces the accuracy of the model
development through ML.

After recording an accuracy of up to 87% in the above experiment, we added one more
experiment shown in Table 6. That is, we added an additional image dataset by slightly

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1485

changing the method used in the CRIS data augmentation. In the conventional CRIS method,
a fixed starting point existed when images were processed. However, the method applied
additionally in the experiment was a dynamic cropping method, which changes the reference
point of the image conversion. In other words, when cropping was performed before, a certain
size was cropped at the starting point of the image, but the dynamic cropping method applied
in the experiment changes the cropping position to an intermediate arbitrary point. Based on
this, 580 malware images obtained after removing Label Nos. 3 and 5 were expanded to ~6,000
images. The accuracy confirmed through the experiment was 97%, the highest accuracy
measured in this study. When the CRIS method was applied to malware images, as a result of
applying various changes to the cropping method, a very high accuracy was recorded with an
extremely small number of malware images for training—580 original files.

6. Conclusion
ML has been in the spotlight as the most feasible solution for defense against malware

attacks, which are continuously increasing and becoming more complex. Research is being
actively conducted in South Korea and other countries to identify malware using AI and ML.
To develop a system capable of classifying malware using ML and even discover new malware,
we developed the MalDC system that creates high-quality malware image datasets for training
by converting malware into images and then preprocessing the obtained image dataset. MalDC
provides a strategy for classifying malware with high accuracy through experiments conducted
using the MS Kaggle dataset and the KISA ransomware dataset, thereby verifying the
feasibility of the proposed system.

Research on malware analysis using ML requires the consideration of two main factors.
First, the method of converting malware into images should be developed. Through
experimental results, we found that it is important to determine the width value such that the
unique signatures of malware can be visualized when converting malware into images for
MalDC. If the most appropriate images can be created by flexibly changing the width, the
accuracy of the malware classification using ML will increase. This is because the malicious
code exists in a certain part of the malware because a malware is designed to alter regular
software and perform malicious activities. Therefore, if information regarding the part where
the malicious code is located can be found, a higher accuracy can be achieved. Furthermore,
we found that the accurate selection of the locations of four sections constituting a malicious
PE file and the method of processing the BSS section are factors that affect the accuracy.

Second, accuracy can be increased by improving the quantity and quality of the malware
image dataset. This is generally true for all applications using ML. Because a sufficient amount
of malware could not be used to train the ML model in MalDC, we conducted various
experiments to solve the insufficient quantity and quality problem of training data. According
to our experimental results, the use of the fine-tuning method for learning of malware images
led to a relatively high accuracy. The CRIS data augmentation method was used to expand the
size of the malware image dataset and secure quality, and a high-quality dataset of 689
malware files without BSS sections provided by KISA was used by removing imbalanced
labeled data. As a result, an accuracy of 97% was achieved.

MalDC showed that, unlike conventional static analysis and dynamic analysis, ML can be
used to divide the malware into groups based on the same malicious behaviors and ultimately
discover new malware. When a malware classification model is trained using ML, the accuracy
may vary significantly depending on the data preprocessing method used. In the future, we

1486 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

plan to investigate methods to perform high-quality data augmentation by preprocessing
malware images in a more sophisticated manner.

Acknowledgement
This work was supported by Agency for Defense Development (ADD) and Defense
Acquisition Program Administration (DAPA). [No. UD210029TD]

References
[1] AV-TEST. Malware, 2021. Article(CrossRef Link)
[2] Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen, S. Shieh, “IoT Security: Ongoing

Challenges and Research Opportunities,” in Proc. of 2014 IEEE 7th International Conference on
Service-Oriented Computing and Applications, pp. 230–234, 2014. Article (CrossRef Link)

[3] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The evolution of android malware
and android analysis techniques,” ACM Computing Surveys (CSUR), vol. 49, no. 4, pp.1-41, Dec.
2017. Article (CrossRef Link)

[4] M. Stephen, “Alan Turing and the development of Artificial Intelligence,” AI communications, vol.
27, no. 1, pp. 3-10, 2014. Article (CrossRef Link)

[5] H. J. Matthew, A. M. Swiergosz, H. S. Haeberle, J. M. Karnuta, J. L. Schaffer, V. E. Krebs, A. I.
Spitzer, and P. N. Ramkumar, “Machine learning and artificial intelligence: definitions,
applications, and future directions,” Current reviews in musculoskeletal medicine, vol. 13, no. 1,
pp. 69-76, Feb. 2020. Article (CrossRef Link)

[6] M. I. Jordan, and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science,
vol. 349, no. 6245, pp. 255-260, 2015. Article (CrossRef Link)

[7] J. S. Luo, and D. C. T. Lo, “Binary malware image classification using machine learning with
local binary pattern,” in Proc. of 2017 IEEE International Conference on Big Data (Big Data),
IEEE, pp. 4664-4667, 2017. Article (CrossRef Link)

[8] C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by machine learning: A
review,” expert systems with applications, vol. 36, no. 10, pp. 11994-12000, Dec. 2009.
Article (CrossRef Link)

[9] D. Bruijne, M. Marleen, “Machine learning approaches in medical image analysis: From detection
to diagnosis,” Medical image analysis, vol. 33, pp. 94-97, 2016. Article (CrossRef Link)

[10] R. Royi, M. Radu, C. Feuerstein, Y. T. Elad, and M. Ahmadi, “Microsoft malware classification
challenge,” 2018. Article (CrossRef Link)

[11] Korea Internet Security Agency, “CISC2017 data challence Malwares 2017,” Jan. 2022.
Article (CrossRef Link)

[12] X. Jin, J. Chi, S. Peng, Y. Tian, C. Ye, and X. Li, “Deep image aesthetics classification using
inception modules and fine-tuning connected layer,” in Proc. of 2016 8th international conference
on wireless communications & signal processing (WCSP), IEEE, pp. 1-6, 2016.
Article (CrossRef Link)

[13] T. Nima, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and J. Liang,
“Convolutional neural networks for medical image analysis: Full training or fine tuning?,” IEEE
transactions on medical imaging, vol. 35, no. 5, pp.1299-1312, May. 2016. Article (CrossRef Link)

[14] O. Simeone, “A very brief introduction to machine learning with applications to communication
systems,” IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp.
648-664, 2018. Article (CrossRef Link)

[15] D. Simeone, and P. M. Ameer, “Brain tumor classification using deep CNN features via transfer
learning,” Computers in biology and medicine, vol. 111, pp. 103345, Jun. 2019.
Article (CrossRef Link)

[16] L. Yann, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436-444, May.
2015. Article (CrossRef Link)

https://www.av-test.org/de/statistiken/malware/
http://doi.org/10.1109/SOCA.2014.58
http://doi.org/10.1145/3017427
http://doi.org/10.3233/AIC-130579
http://doi.org/10.1007/s12178-020-09600-8
http://doi.org/10.1126/science.aaa8415
http://doi.org/10.1109/BigData.2017.8258512
http://doi.org/10.1016/j.eswa.2009.05.029
https://doi.org/10.1016/j.media.2016.06.032
https://doi.org/10.48550/arXiv.1802.10135
https://dl.acm.org/doi/abs/10.1145/3440943.3444745
http://doi.org/10.1109/WCSP.2016.7752571
http://doi.org/10.1109/tmi.2016.2535302
http://doi.org/10.1109/TCCN.2018.2881442
http://doi.org/10.1016/j.compbiomed.2019.103345
http://doi.org/10.1038/nature14539

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 5, May 2022 1487

[17] S. Endang, R. Sustika, R. S. Yuwana, A. Subekti, and H. F. Pardede, “Deep structured
convolutional neural network for tomato diseases detection,” in Proc. of 2018 international
conference on advanced computer science and information systems (ICACSIS), IEEE, pp. 385-
390, 2018. Article (CrossRef Link)

[18] M. Agnieszka, and M. Grochowski, “Data augmentation for improving deep learning in image
classification problem,” in Proc. of 2018 international interdisciplinary PhD workshop (IIPhDW),
IEEE, pp. 117-122, 2018. Article (CrossRef Link)

[19] H. Mahbub, J. J. Bird, and D. R. Faria, “A study on cnn transfer learning for image
classification,” in Proc. of UK Workshop on computational Intelligence, Springer, Cham, pp. 191-
202, 2018. Article (CrossRef Link)

[20] R. Waseem, and Z. Wang, “Deep convolutional neural networks for image classification: A
comprehensive review,” Neural computation, vol. 29, no. 9, pp. 2352-2449, 2017.
Article (CrossRef Link)

[21] R. Esteban, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image classifier
architecture search,” in Proc. of the aaai conference on artificial intelligence, vol. 33, no. 01, pp.
4780-4789, Feb. 2019. Article (CrossRef Link)

[22] H. Kaiming, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in Proc.
of European conference on computer vision, Springer, Cham, pp. 630-645, Oct. 2016.
Article (CrossRef Link)

[23] H. Andrew, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H.
Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” Apl.
2017. Article (CrossRef Link)

[24] H. Gao, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely connected convolutional
networks,” in Proc. of the IEEE conference on computer vision and pattern recognition, pp. 4700-
4708, 2017. Article (CrossRef Link)

[25] N. F. Amalina, A. Feizollah, N. B. Anuar, and A. Gani, “Evaluation of machine learning classifiers
for mobile malware detection,” Soft Computing, vol. 20, no. 1, pp. 343-357, 2016.
Article (CrossRef Link)

[26] Q. D. Ngo, H. T. Nguyen, V. H. Le, and D. H. Nguyen, “A survey of IoT malware and detection
methods based on static features,” ICT Express, vol. 6, no. 4, p. 280-286, 2020.
Article (CrossRef Link)

[27] S. Joshua, and K. Berlin, “Deep neural network based malware detection using two dimensional
binary program features,” in Proc. of 2015 10th international conference on malicious and
unwanted software (MALWARE), IEEE, pp. 11-20, 2015. Article (CrossRef Link)

[28] D. J. Jeon, and D. G. Park, “Real-time malware detection method using machine learning,” The
Journal of Korean Institute of Information Technology, vol. 16, no. 3, pp. 101-113, Mar. 2018.
Article (CrossRef Link)

[29] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K. Nicholas, “Malware detection
by eating a whole exe,” in Proc. of Workshops at the Thirty-Second AAAI Conference on Artificial
Intelligence, 2018. Article (CrossRef Link)

[30] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware behavior using
machine learning,” Journal of Computer Security, vol. 19, no. 4, pp. 639-668, 2011.
Article (CrossRef Link)

[31] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images: visualization and
automatic classification,” in Proc. of the 8th international symposium on visualization for cyber
security, pp. 1-7, 2011. Article (CrossRef Link)

http://doi.org/10.1109/ICACSIS.2018.8618169
http://doi.org/10.1109/IIPHDW.2018.8388338
http://doi.org/10.1007/978-3-319-97982-3_16
http://doi.org/10.1162/neco_a_00990
http://doi.org/10.1609/aaai.v33i01.33014780
http://doi.org/10.1007/978-3-319-46493-0_38
http://doi.org/10.1007/978-3-319-46493-0_38
http://doi.org/10.1109/CVPR.2017.243
http://doi.org/10.1007/s00500-014-1511-6
https://doi.org/10.1016/j.icte.2020.04.005
http://doi.org/10.1109/MALWARE.2015.7413680
http://doi.org/10.14801/jkiit.2018.16.3.101
https://doi.org/10.48550/arXiv.1710.09435
http://doi.org/10.3233/JCS-2010-0410
http://doi.org/10.1145/2016904.2016908

1488 Moon et al.: MalDC: Malicious Software Detection and
Classification using Machine Learning

Jaewoong Moon is a professor at Sejong University and has been an expert in
information protection and software for 25 years. He majored in information protection in
2019 at Sejong Cyber University Graduate School and completed his doctorate in the
Department of Information Protection at Sejong University in 2021. Starting as an
engineer, he conducted security consulting, research and development, and system design
in the field of cybersecurity, and founded an information protection company in 2002 and
operated the company as a CEO for about 16 years.

Subin Kim is a B.S. candidate in the department of computer and information security
with the college of software convergence, Sejong University, Seoul, Korea. Her research
interests include information security, deep learning, and artificial intelligence.

JangYong Park is starting to work toward the Ph.D. degree in computer and
information security at Sejong University, Seoul, South Korea in 2017. He is currently
working at the Software Engineering Security Group (SESLab) in Security at Sejong
University, and his main research interests are computer security, information security
industry development trend research, and air gap.

Jieun Lee received the B.Sc. degree in embedded systems engineering at Daegu
University, Daegu, South Korea in 2017, respectively. She is currently working toward
the Ph.D. degree in computer and information security at Sejong University, Seoul, South
Korea. Prior to her current position, she was a researcher at Autonomous IoT Research
Center, Korea Electronics Technology Institute (KETI), South Korea. Her research
interests include Internet of Things interoperability, semantics, and data platform testing.
Contact her at love9ly@sju.ac.kr.

Kyungshin Kim is a Principal Researcher, leading the Computer Security Development
Team in the Agency for Defense Development of Korea. He received a PhD at Department
of Computer Engineering of Kyunghee Univ in Korea, and holds B.S and M.S in the
Electronic Engineering of Kumoh Institute of Technology and in Electronic Engineering
from Yonsei University. Now he focuses on Machine Learning for Malware Detection
and Security information and event management (SIEM) in Network Security Monitoring
Systems.

JaeSeung Song is an associate professor, leading the Software Engineering and Security
Lab (SESLab), in the Computer and Information Security Department at Sejong
University. He received a PhD at Imperial College London in the Department of
Computing, United Kingdom. He holds B.S. and M.S. in Computer Science from Sogang
University. His research interests span the areas of software engineering, software testing,
networked systems and security, with a focus on the design and engineering of reliable
IoT/M2M platforms, particularly in the context of semantic IoT data interoperability,
secure software patch techniques, blockchain IoT, and edge computing.

