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Abstract 

 
Recently, the importance and necessity of artificial intelligence (AI), especially machine 
learning, has been emphasized. In fact, studies are actively underway to solve complex and 
challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI 
security systems, and AI surgical robots. Information security that involves analysis and 
response to security vulnerabilities of software is no exception to this and is recognized as one 
of the fields wherein significant results are expected when AI is applied. This is because the 
frequency of malware incidents is gradually increasing, and the available security technologies 
are limited with regard to the use of software security experts or source code analysis tools. 
We conducted a study on MalDC, a technique that converts malware into images using 
machine learning, MalDC showed good performance and was able to analyze and classify 
different types of malware. MalDC applies a preprocessing step to minimize the noise 
generated in the image conversion process and employs an image augmentation technique to 
reinforce the insufficient dataset, thus improving the accuracy of the malware classification. 
To verify the feasibility of our method, we tested the malware classification technique used by 
MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet 
& Security Agency (KISA). Consequently, an accuracy of 97% was achieved. 
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1. Introduction 

In recent years, with the rapid dissemination of the Internet and improvement in the 
performance of computers, different types of software are being used in various areas of human 
life; however, the side effects of using computers are also increasingly rapidly. For example, 
in the case of service disruption through distributed denial-of-service (DDoS) attacks and 
leakage of private information through hacking, users experience various types of damages. 
Most of such hacking attacks are due to malware attacking vulnerabilities that exist in normal 
software, and the subsequent damage to users continues to increase every year. According to 
“The 2014 Internet Intrusion Response Plan” of the Korea Internet Security Center, Korea 
Internet & Security Agency (KISA), the average daily appearance of malware increased from 
1,435 types in 2013 to 8,847 types in 2014, which is an approximate six-fold rise over a year. 
Furthermore, according to AVTEST, an IT security research organization, the number of 
malware incidents reported annually has increased by ~12 times in ten years from 99.71 
million cases in 2012 to 1.18063 billion cases in 2021 [1, 2].  

One of the main reasons for the sharp increase in software-infecting malware is the use of 
automation tools by hackers for the rapid creation of similar or variant malware. Malware 
created using automated tools change only the encrypted code part or perform entry point 
obscuring (EPO) attacks that change the code at the entry point part of the software, thereby 
changing only the form of software although the type of malicious behavior remains the same. 
Based on this, they avoid detection by vaccines. The number of similar and variant malware 
is surging due to the spread of the software-modification-based polymorphic attack method, 
and techniques to interfere with the analysis of software are also being developed [3]. 

Machine learning (ML) is a field of artificial intelligence (AI) [4] and refers to a technique 
that trains the computer using data so that it can create new rules on its own and make decisions 
without any help from humans. In other words, ML involves the creation of sophisticated 
algorithms to analyze learned data in order to find and learn specific patterns. ML is used in 
different areas in real life, such as autonomous vehicle control, various services based on 
natural language processing, and robotic surgery. In particular, ML has shown excellent results 
when solving certain problems by learning images. For example, ML can be used to detect 
dangerous objects or terrorist threats in advance through the analysis of images captured on a 
closed-circuit television (CCTV) and to restore the pixels of old photographs or the colors of 
black and white photographs [5, 6].  

Attempts to use ML in the field of information security have also been made in recent years. 
With the advancement of various information and communication technologies, hacking 
techniques are becoming increasingly sophisticated and complex, causing more damage than 
before. In previous cyberattacks, intrusion detection and attack analysis could be performed 
by just using the pattern matching method based on the analysis of conventional attack patterns 
[7]. Currently, however, the simple pattern matching method alone can no longer be used to 
detect advanced cyberattacks because of the use of various smart devices and software. 
Furthermore, cases of cyberattacks using AI have been recently identified, and the defense 
strategy using some white hat experts is no longer sufficient to block advanced intelligent 
cyberattacks. Therefore, new technology should be developed by applying AI to the field of 
information security, such as network intrusion detection, malware analysis, and vulnerability 
analysis, to respond to intelligent cyberattacks, which are difficult to detect by experts or 
conventional hacking defense tools. 

In the case of cyberattacks using malware, many recent attacks have used concealed 
malware to collect and leak important data by bypassing security systems to prevent users 
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from being aware of it. Malware poses a major threat to the security of computer systems. As 
malware becomes increasingly complex and large, it has become increasingly difficult to deal 
with malware [1]. Because of the rapid spread of malware, the number of signature patterns 
found by analyzing the patterns of new malware released every year is rapidly increasing. The 
frequency and processing capability of malware incidents have exceeded human limits. 
Previously, static analysis and dynamic analysis were used to identify malware hidden inside 
normal software. However, because conventional analysis methods execute code for analysis, 
they have a limitation in that the analysis is not effective in terms of the time efficiency or due 
to code obfuscation. Recently, studies on the development of relevant technology, through the 
application of AI to the field of malware detection, are being actively conducted [8]. 

In this study, we propose a malicious software detection and classification (MalDC) 
framework to classify malware with the same or similar attack patterns. To this end, we 
constructed a learning dataset by representing the malware in the form of images and trained 
the ML to use image analysis techniques. Note that our method showed good performance [9]. 
The developed ML algorithms and learning dataset can be used to discover newly appearing 
malware easily and quickly to prevent or minimize the damage caused by hacking. For the 
successful performance of ML, high-quality learning data are required. Therefore, in this study, 
we used the Kaggle data provided by Microsoft [10] and malware data collected by KISA [11] 
as the learning data and succeeded in effectively classifying the malware. Furthermore, to 
obtain the learning dataset sufficiently and remove noise, training was performed using the 
image dataset and the fine-tuning method of a convolutional neural network (CNN)-based 
inception model was used [12, 13]. Further, the algorithm’s accuracy was improved by 
sufficiently increasing the image dataset for learning using a data augmentation method. Based 
on these techniques and procedures, a malware classification success rate of 97% was finally 
achieved. 

The research contributions of this study are as follows: 
• A system architecture was designed and developed to classify malware by training the 

ML model with malware converted into images. 
• Techniques were developed to convert malware into images and increase the amount of 

training data. 
• MS Kaggle and the malware dataset provided by KISA were used to develop the ML 

model and validate the effectiveness of the malware classification technique. 
The remainder of this paper is organized as follows. Section II reviews related work and 

explains the concept and technology of CNN models—a typical ML method—as background 
knowledge to improve the understanding of the proposed technique. Section III introduces the 
proposed ML-based malware classification framework. Then, Section IV focusses on the 
technique of converting malware into images and the method of expanding the learning dataset. 
Section V provides the analysis and results for the malware classification experiments using 
the MS Kaggle and KISA malware datasets. Finally, Section VI presents the conclusions and 
discusses the future research direction. 

2. Background and Related Work 
This section introduces the basic ML and image classification techniques required to 

understand the proposed ML-based malware classification method and describes existing 
studies related to malware classification. 
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2.1 ML 
ML refers to the computing capability that facilitates learning without explicit 

programming. It is mainly used for classification and prediction, and the training of the ML 
model is performed using training data. Furthermore, it requires an exact target variable, i.e., 
explicit reaching point, from a certain domain (predicted dependent variable). Therefore, 
results vary depending on the relationship between the type and form of input data and the 
target variable [14]. 

ML refers to the task of finding the optimal parameter values to most accurately predict the 
solution for a particular problem. In general, therefore, ML aims to minimize errors for new 
samples that are not in the training dataset after going through three stages of training, 
validation, and testing. The following shows brief definitions of the three stages of ML applied 
in this paper. 
• Stage 1 (Training): It is the stage where an optimal state is reached while improving the 

performance and is called learning or training. This stage is highly affected by the 
performance of the computer system used. 

• Stage 2 (Validation): It is the stage where classification using the CNN is performed after 
the training is complete. Individual files can be used, or a bundle of multiple files can be 
used. 

• Stage 3 (Test): The classification accuracy at the file level in the validation stage and the 
statistics obtained from various processes are summarized. It is a process of predicting the 
target value for a “new” sample that is not in the training dataset. In this stage, data that 
have new samples are called the test dataset, and the properties that have high performance 
for the test dataset exhibit a generalization ability. 

2.2 Convolutional Neural Network (CNN) Model 
CNNs are mainly used in the fields of image recognition, image processing, and computer 

vision. A CNN is a neural network model that performs an additional image preprocessing 
task referred to as convolution [14, 15]. While conventional image learning methods provide 
raw pixel values of images to learn each feature, a CNN receives an original image as-is and 
learns the features of that image while maintaining its spatial/local information. CNN models 
have evolved continuously, and several different types of CNN architectures have been 
developed. A CNN focuses on and utilizes parts of the image rather than the entire image as 
well as the relationship between the pixels that constitute the image. It has been used in several 
studies owing to its desirable performance in image pattern analysis. ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) is a challenge competition that provides a 
representative large-scale classification dataset and provide brief descriptions of the four 
different CNN architectures that have shown excellent performance in the literature. 
• AlexNet: This architecture was proposed in 2012 and has shown an improved recognition 

accuracy compared to all existing ML and computer vision approaches. It is a 
breakthrough method in the fields of ML and computer vision for visual recognition and 
classification tasks and has sparked a surge of interest in deep learning [16]. 

• VGGNET: This method was introduced in 2014 and demonstrated that the depth of the 
network is an important factor affecting the recognition accuracy of a CNN. The VGG 
architecture has a deeper structure than the AlexNet and uses the ReLU activation function. 
It also uses a single maximum pooling layer and several fully connected ReLU activation 
functions. The model’s final layer is a SoftMax layer, which performs the classification. 
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Essentially, after stacking convolutional layers of 3×3 in overlaps, the ReLU functions 
are used. 

• ResNet: This architecture was introduced in 2015 and consists of deeper layers that the 
ones mentioned above. Variants of the ResNet model have been developed with different 
depths of layers, such as 24, 50, 101, 152, and 1,202 layers. Among them, the most popular, 
ResNet-50, consists of 49 convolutional layers and one fully-connected layer. To solve 
the problem of learning becoming more complex as the depth of the network increases, a 
concept called skip connection was proposed in the ResNet, which caused a reduction in 
the complexity [17]. 

• Inception: Inception is an architecture that has evolved several times from V1 called 
GoogLeNet in 2014 to V4 developed in 2015. As the learning architecture commonly has 
a greater width and depth, the performance of this model is the most desirable of the ones 
mentioned above. However, during training performed, problems such as overfitting 
occur, and it can be said that a greater width and depth are not always beneficial for an 
improved performance. Inception successfully implemented an architecture that could 
lead to maximum performance without compromising performance [3]. 

2.3 Image Classification Algorithm 
Classifying objects in the form of images into available categories is one of the common 

functions of computer vision. Image classification can be performed using Histogram of 
Oriented Gradients (HOG) or Scale-Invariant Feature Transform (SIFT), and if there are 
defined categories, the classifier is used to classify the input image as one of the appropriate 
categories [19]. In recent years, feature extraction and classification have been performed by 
a single deep learning classifier model, which showed better accuracy than conventional image 
classification methods. In particular, ML is used in various areas related to image classification. 
Esteban et al. proposed AmoebaNet-A, an image classification CNN that, for the first time, 
surpassed the designs proposed by humans. (Later on, improved versions, AmoebaNet-B, C, 
and D were additionally proposed.) By introducing an age property to favor the younger 
genotypes, they modified the evolutionary algorithms applied in tournament selection. 
AmoebaNet-A discovered parameters and network architectures using more complex 
architecture search methods. Furthermore, it had comparable accuracy to the latest ImageNet 
models while maintaining similar parameter sizes; furthermore, in an AmoebaNet architecture 
of a larger size, it performed with a top-5 error rate of 3.4% [20, 21].  

Kaiming et al. developed a network called ResNet that achieved a top-5 error rate of 3.57% 
in ImageNet tasks with an ensemble structure by stacking 152 layers—more than eight times 
deeper than the existing VGG16 network. The authors proposed a concept called skip 
connection and a network of deep structure. AlexNet, VGGNet, and GoogLeNet transformed 
feature maps through convolutional layers, but ResNet is trained with convolution operations 
using the values added to the inputs. ResNet with an architecture of up to 152 layers was 
proposed, and later, a deep architecture with 1,002 layers was announced [22]. ResNet’s CNN 
has been used variously as a basic CNN in the object detection field and showed superior 
performance in faster-RCNN-based detectors [22]. 

In addition, Howard et al. developed a MobileNet method based on a streamlined 
architecture using convolution layers divided in the depth direction. MobileNet was different 
from common convolution methods in that convolution was applied to each channel, after 
which a 1 × 1 convolution was applied for operations between the channels. In other words, 
this can be viewed as a convolution for each channel + a factorized convolution between 1 × 
1 channels, whereas it is a common operation to apply the convolution to the whole. This 
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method was proven to be favorable in terms of parameters and speed compared to conventional 
methods [23]. Furthermore, Huang et al. developed DenseNet, a ResNet-based variant. ResNet 
applies the skip connection to the next layer only, but DenseNet has a structure that applies 
the skip connection to all layers. DenseNet has the following advantages: it (1) alleviates the 
gradient vanishing problem, (2) strengthens feature propagation, (3) encourages feature reuse, 
and (4) reduces the number of parameters [24]. 

2.4 Research on Application of Malware-related AI 
Because the effectiveness of manual inspection is poor compared to the high spread rate of 

malware, studies on AI application to malware analysis are actively underway[25, 26, 27, 28, 
29]. A study was conducted at the Berlin Institute of Technology to apply ML to malware’s 
behavior-based analysis [5], and research was conducted at the Swiss German University to 
detect malware based on ML technology by constructing a sandbox and automatically 
analyzing the malware’s behaviors and generating reports. As such, many organizations have 
been conducting research to apply AI technology to malware [7, 22, 30].  

In particular, many studies have recently used AI and ML to detect malware of EXE and 
PE types [31]. Nvincea Labs in the U.S. conducted research on malware detection methods 
using deep neural networks (DNNs). After extracting features, such as string 2D histogram 
and portable executable (PE) import tables and PE metadata, from malicious/normal programs, 
they applied a method of learning them using DNNs. Furthermore, the DNN model used in 
the study consisted of one input/output layer and two or more hidden layers that had 1,024 
nodes and showed that malware could be classified through one output produced through the 
model [20]. This research was conducted at CQVista on a non-signature-based malware 
detection method that facilitates real-time detection while providing high detection rates by 
extracting raw features of PE files and applying a decision tree algorithm to the results of 
calculating the information gain (IG) of the extracted features [21]. Furthermore, research was 
conducted at Maryland University on a method of detecting malware by training a deep 
learning model with the byte information of files to detect malware of Windows executable 
files (.exe). For learning byte information using deep learning, a gate structure that performs 
two convolutional operations was applied to the CNN, and a structure for normal/malicious 
software classification was added to conduct the training and classification [23]. 

3. MalDC: Intelligent Malware Classification Framework Design 
This section describes the system architecture of MalDC, a Malicious Software Detection 

and Classification framework. In this study, we represented malware binaries as images and 
treated the malware classification problem as a problem of classifying images. Conventional 
malware analysis and detection techniques must analyze in detail or execute malware at the 
code level. In the case of MalDC, however, because malware is converted into images and 
then classified through ML, there is an advantage in that it facilitates accurate classification 
without execution and detailed analysis of code.  

3.1 MalDC Overview 
Fig. 1 shows the architecture of the MalDC system. MalDC is executed using a binary 

malware dataset as an input. The binary malware dataset consists of a training dataset used to 
train the model and a testing dataset used to validate the model. The training data are converted 
into images to train the ML model. Noise is removed from the created malware images, which 
then moves through the preprocessing process to increase the training effect. The malware 
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images for training are used as inputs for the training of the ML model for malware 
classification, based on which the initial model is developed. The performance of the 
developed malware classification model is assessed using the testing malware dataset. If a 
certain level of performance is not achieved, a process of modifying the model is performed 
by retraining the model after changing the parameters, and testing is performed again. If a 
certain level of performance is achieved, a model to be used in MalDC is finally produced. 
The developed malware classification can be used to classify existing malware or check if the 
software suspected of being malware is indeed malware. The following section describes the 
stages performed repeatedly in the proposed system. 
• Imaging Malware: MalDC visualizes malware binaries as gray-scale images. Patterns that 

show edges of the objects existing in an image are required when learning images, and 
gray-scale images consist of brightness values without color information. Therefore, ML 
algorithms can check the patterns of the objects included in gray-scale images faster and 
more efficiently, compared to those in color images. In case of many malware families 
and variant families, images belonging to the same family look very similar in terms of 
layouts and textures. Therefore, MalDC uses a classification method that uses standard 
image features, motivated by these visual similarities. Obviously, this classification 
method has the advantage that direct analysis of source code or execution of code is not 
required, unlike static and dynamic analysis. 

• Image pre-processing: After converting malware into images, it is necessary to remove 
noise, label images, and expand the image dataset to achieve the best performance in ML. 
For example, in a study conducted at the University of California, Santa Barbara, ML’s 
performance was improved by obtaining a large dataset by enlarging or reducing the 
image size or changing the width of images in the same rectangular shape. MalDC also 
applies several preprocessing processes, such as noise removal and image resizing [20]. 

• Image data learning and development of an optimal model: MalDC uses a CNN algorithm 
specialized in image classification to classify images. During the initial implementation, 
we developed the neural network system using Google’s open-source TensorFlow library. 
Afterward, the TensorFlow Inception library, which was newly released by Google to 
increase the level of image classification accuracy of basic TensorFlow, was applied, and 
a malware image classification accuracy of over 90% was achieved. 

 

 
Fig. 1. MalDC framework architecture 
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3.2 Imaging Malware 
Fig. 2 shows two different types of malware visualized as images. In this figure, the images 

in the first row show three malware instances belonging to the Fakerean family, and the images 
in the second-row show Dontovo malware-based families [21]. Fakerean is malware that 
appeared around 2010 and is registered with the Microsoft Malware Protection Center 
(MMPC). It has the characteristic of disguising itself as an antivirus by forging the name or 
logo. Dontovo is a kind of Trojan horse, which can install malware or software on computers. 
Dontovo’s core malware code can be ported by hackers to other software. In this case, it is 
recognized as another software in the external shape, but abnormal activities that actually 
occur are executed by the malicious code part defined in Dontovo. Because images belonging 
to the same family have similar visual characteristics, the characteristics of images can be used 
to classify the family.  
 

  
Fig. 2. Various sections that constitute Dontovo A malware 

 
The samples belonging to the same family can be distinguished because they are visually 

similar. In contrast, images of malware that belong to different families show distinctly 
different patterns. This is because new malware is created through a method of copying the 
behavior and features of existing malware and applying them to new software, rather than 
developing malware from scratch when creating malware. In other words, malware can be 
classified using computer vision technology that facilitates image-based classification because 
of the visual similarities of such malware images. In MalDC, malware classification and 
discrimination are performed based on the image visualization similarities of malware of the 
same family. 

In MalDC, the malware binaries given for the visualization of malware are constructed in 
a 2D array which is read as vectors of unsigned 8-bit integers. They can be easily visualized 
in a gray-scale image with a range of [0, 255] (0: black, 255: white). The image’s width is 
fixed, and the height may vary depending on the file size. 

Fig. 3 shows a gray-scale image example converted from binaries of downloader Dontovo 
A, a type of Trojan horse that downloads and executes arbitrary files. In most malware images, 
several different sections (binary fragments) exist, and each section shows a unique image 
texture. Dontovo A malware consists of a total of four sections: .text, .rdata, .data, and .rsrc. 
The .text section has executable code. In Fig. 3, the first part of the .text section contains code 
with a sub-divided texture. The remaining part is filled with zeros, and the end of this part is 
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also filled with zeros. Next, the .data section contains uninitialized code (black patch) and 
initialized data (detailed texture). The last section is .rsrc, which contains all resources of the 
module. It can also include an icon that can be used by the application. When malware is 
represented as an image, various sections of software have different patterns in the image. 
 

  
Fig. 3. Classification of malware images by family 

3.3 MalDC ML Algorithm and Configuration 
To learn and classify images through ML, an appropriate ML algorithm must be selected 

for the problem to be solved, and various parameters related to the training must be set. 
ML Algorithm: We developed a model by selecting Inception, which shows the best 
performance and is specialized in image classification among ML open-source libraries, to 
learn and classify malware images using ML in MalDC.  

Inception is an ML technique for computer vision developed by Google. GoogLeNet won 
first with V1 in a global image recognition challenge in 2014, and currently, V4 was released. 
The field with the highest utilization of Inception technology is the medical image analysis 
field. Google Health’s medical imaging team has revealed that AI developed based on 
Google’s computer vision technology has reached such a level that diabetic retinopathy can 
be diagnosed using AI. The AI system using Inception diagnosed diabetic retinopathy 
accurately, recording an F-score of 0.95 (the maximum is 1)—which is slightly higher than 
0.91, the average of eight doctors—considering the sensitivity and specificity required for 
diagnosis. Inception models can be classified into the from-scratch method and fine-tuning 
method according to the training method [22]. 
• From-scratch method: As the name suggests, images to be classified are converted into 

images that can be recognized by ML, and after going through the training process, they 
are stored in the neural network. This is followed by the classification process, but the 
accuracy is lower than that of the fine-tuning method, in which the training process is 
performed once more with the training results. 
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• Fine-tuning method: The exact meaning of this method can be found in a notation, Fine-
Tune a Pre-Trained Model. Weights are adjusted in the existing training models, or a 
preprocessed dataset is created to make a new training model. It is feasible when 
classifying desired images, but images cannot be recognized and learned immediately 
during training.   Therefore, they are converted in a way that they can be recognized in 
ML, and the images and image labels are structured and stored. MalDC uses the fine-
tuning method for high accuracy [7]. 

Parameter settings: In ML, parameters are variables determined by the model, and their 
values are determined from data. Hyper-parameters refer to values that the user sets by 
experience when training the model. In MalDC, the following parameters were used. 
• Validation: This refers to a proportion of the image learning dataset used for evaluation. 

The fitness of the ML algorithm is determined in the following manner. Usually, a 
predetermined percentage of the given labeled image group is used for training, and after 
using the remaining images for evaluation, the fitness of the algorithm is determined based 
on the results. For example, if the validation value is set to 100, X – 100 images out of a 
total of X images are used for training, and the remainder, 100 images are used for 
evaluation. 

• Steps: This is a parameter used in the training stage and provides information that 
determines the number of steps to go through when training the ML model and the number 
of images to be used each time when training. This is related to the training time. If this 
value is large, training takes a long time. 

• Batch size: It is a parameter used in both the training and validation stages, and its value 
determines how many images will be learned or evaluated in each execution step. 

• Learning rate: This refers to the size of the search rate used in the training. For example, 
if the learning rate is too large, overshooting may occur, leading to no learning. In contrast, 
if the learning rate is too small, the training steps are too small. Thus, even if a very long 
time is spent on training, learning does not take place, resulting in very poor accuracy. 
Because there is no recommended value for this, the size of the value was tuned up or 
down between experiments according to the given input layer’s image characteristics, and 
the accuracy was checked. 

• Weight decay: This parameter is used as a supplementary factor for the learning rate. If 
the learning rate is too small, causing overfitting, one of the solutions may be to make the 
learning rate smaller, but in some cases, the weight decay value is tuned to suppress 
overfitting. This method is called regulation. In MalDC, the weight decay between 
experiments was fixed mostly at 0.00004. 

4. MalDC Implementation 
This section introduces the development environment settings for the implementation and 

experiments using MalDC and the core algorithms of major program modules used in MalDC.  

4.1 Equations 
In MalDC, TensorFlow and Python 3 were used together to execute ML algorithms. Table 

1 shows the development environment required for the construction and operation of MalDC. 
Furthermore, we developed the modules required for converting malware into images, learning 
the malware images, and evaluating the trained model for malware classification in MalDC. 
Table 2 provides a list of the developed modules and brief descriptions of their functions. All 
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modules were developed using Python. The following section describes the execution logic of 
each module program.  
 

Table 1. Basic development environment 
Windows development environment 
• CPU: Intel i7-6700HQ @ 2.6GHz, RAM 8GB 
• Windows 10 home 64bit 
• GPU: NVIDIA GEFORCE GTX 965M 
Linux development environment 
• CPU: POWER8 processor, 3.32GHz 2-socket 16-core 
• Memory: 128GB 
• Ubuntu 16.04.3 ppc64 (Kernel: 4.8.0-36) 
• GPU: Two units of K80 (a total of four GPUs) 
• DISK: 1TB x 2 

 
Table 2. Basic development environment 

Class Applications 
Imaging Module 

(MalDC-M1) 
Performs the function of preparing a training dataset by 
downloading and converting malware into TFRecord, the 
image format for training. 
Module name: malware_imaging.py 

Training Module 
(MalDC-M2) 

Performs the function of developing a model by executing 
actual ML using the prepared training dataset of malware 
images. 
Module name: maldc_training.py 

Evaluation 
Module 

(MalDC-M3) 

The accuracy of the model developed based on the training 
is measured using the test image dataset. 
Module name: maldc_eval.py 

 

4.2 MalDC Modules 
MalDC-M1: MalDC-M1 is a module that performs imaging of malware binary files in 

MalDC. It receives a malware dataset as input and converts them into images suitable for ML. 
Because TFRecord is used as the image format for training in MalDC, MalDC-M1 implements 
the function of converting malware code into the TFRecord format. Before converting into 
images of malware, MalDC-M1 first checks for normal operation. Three image sets are used 
for the initial operation check: cifar10, flowers, and mnist, which are widely used in ML 
research. Cifar10 is a dataset comprising 60,000 color images, and each image is labeled as 
one of ten classes (airplane, car, bird, cat, deer, dog, frog, horse, ship, and truck). Flowers is a 
dataset of flower images classified by five labels. Mnist is a large image database used widely 
for training and testing in the ML field. It was created by remixing samples of the original 
dataset of NIST. After checking for normal operation first using regular image sets, conversion 
into images is performed with the MS Keggle dataset and KISA ransomware dataset.  

MalDC-M2: MalDC-M2, a training module, performs image learning using a deep 
learning model. As mentioned earlier, there are two main methods of training. The first one is 
the “training a model from scratch” method, which means that it is the bottommost method of 
image processing. In other words, it is a method of creating a completely new model, not 
changing a previously developed model. The second one is the “fine-tuning a model from an 
existing checkpoint” method (simply, the “fine-tuning” method), which creates a model by 
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training an already well-crafted model with additional images. In MalDC, accuracy 
experiments were conducted for the two methods. 
• From-scratch method: Training was newly performed with the Inception_V1 model 

using the converted malware image set. At the beginning, various settings (e.g., model 
name, learning rate, intermediate storage time, and maximum steps) were configured for 
model development. Then, after selecting a training dataset, network, and preprocessing 
task type, if all settings were complete, the model was developed through actual training. 

• Fine-tuning method: The fine-tuning method is a method of learning new images based 
on an already created model. When training a “from scratch” model, the Inception_V1 
model was used to classify images. In the fine-tuning method, the pre-trained model was 
downloaded in ImageNet using the same model for comparison, and the model was 
retrained. Thus, a model that recorded an 89.6% accuracy was achieved, which is 
ImageNet’s top-5 accuracy. The training process is performed twice in the fine-tuning 
method. In Process 1, only the last layer is newly trained in the downloaded model, and 
in Process 2, all layers are trained again in the model that has undergone Training Process 
1. 

MalDC-M3: This helps select an appropriate ML model for malware image classification 
by determining the accuracy of the models created in the training module. When a new model 
is created, it can be used to classify malware. Malware images that were not used in training 
are provided as a test dataset in the model, and classification is performed. By checking 
whether the images of malware used in the test were correctly classified, it can verify the 
accuracy of the predictions (malware classification in this paper) made by the created model. 
If the accuracy is high in the test results, model development is completed. If the accuracy is 
not high, the training process is repeated by adjusting the parameters to increase the accuracy. 

5. Experiments and Evaluation 
This section shows and discusses the experimental results for MalDC. In particular, the 

adequacy of the method is determined based on accuracy by applying various approaches, such 
as changing the training method, preprocessing data, and tuning the parameters, and the 
methods used to improve accuracy are introduced. 

5.1 Malware Datasets 
The malware datasets applied to the experiments are the Keggle dataset provided by MS, 

which consists of 10,868 data with nine labels, and a dataset provided by KISA, which consists 
of 689 data with five labels. Table 3 shows the labels of each dataset and the number of data 
included for each label. Both the MS and KISA datasets have an imbalance problem in the 
minimum number of training images and the number of images for each label, which is a 
hurdle in creating high-accuracy models. 
 

Table 3. Information of MS Keggle and KISA Ransomware 
Dataset Type Label Quantity Remark 

Microsoft Keggle 
Dataset 

1 1,541  
2 2,478  

3 2,942 
Label with 
maximum 

data 
4 475  
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5 42 
Label with 
minimum 

data 
6 751  
7 398  
8 1,228  
9 1,013  

Total 10,868  

KISA 
Ransomware 

Dataset 

1 293 
Label with 
maximum 

data 
2 131  

3 23 
Label with 
minimum 

data 
4 154  
5 88  

Total 689  
 

MS’s dataset consists of 10,868 malware data for training, which is small number for 
training of ML. Even MNIST, the first practical dataset for ML, consists of more than 20,000 
handwriting images. However, more important factors that affect accuracy than the number of 
data are the dataset’s quality and the imbalance problem between labels.   

In other words, the quantity of data to be learned, the quality of data, and the balance 
between the labels in the dataset are the most important factors that determine the accuracy of 
the image learning/classifier; however, the MS Keggle dataset and KISA’s dataset do not 
satisfy all these three factors. Since the limitation in the amount of data is unavoidable due to 
characteristics of malware, unlike regular photographs or facial images, we placed the focus 
of the MalDC experiments on finding the model and method that can obtain as high an 
accuracy as possible. 

In the case of MS Keggle dataset, Label No. 5 consists of a total of 42 files, as shown in 
Table 3. There are 2,942 files in the case of Label No. 3, which has the most files, followed 
by 2,478 files for Label No. 2. Compared to these, the fact that the label with the minimum 
data consists of 42 files means that there is a serious imbalance. The imbalance has a very 
significant effect on the accuracy of image classification. Even if the images of Label No. 5 
have accurate signatures, it is not easy to perform accuracte classification with only 42 training 
data. 

5.2 Quality of Datasets 
The data in the MS Keggle dataset used in this study are all executable files of the Portable 

Executable (PE) format that collected malware. PE files are Windows execution data 
representing bytes in the hexadecimal format, and the data contains many undefined bytes 
(represented as ??) depending on the file characteristics. 

When the content of a normal PE file that does not contain undefined bytes is examined, it 
is represented as Fig. 4. It shows the content of the 0akIgwhWHYm1dzsNqBFx.bytes (Label 
No. 2) file, one of the malware images. As such, all contents in a normal malware image file 
are in normal hexadecimal format. In contrast, there are files that consist of undefined code 
(??), which are impossible to represent as hexadecimals. 
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Fig. 4. Byte structure of normal malware 

 
Fig. 5 shows the content corresponding to the lower part of the image file of the above 

malware. The far left side of the figure shows the memory dump address part, and to the right 
is a list of 16-byte virus codes. Fig. 5 shows that the contents of all byte codes from the address 
005A6C00 to the bottom consist of ??. As such, the question mark (??) part is displayed in the 
hexadecimal window when represented as byte code because the virtual address range of 
values corresponding to a certain range cannot be known. In the file structure, it is commonly 
referred to as the BSS section, and it is used to reflect the static storage requirement of the 
program, although the space is not usually secured in the file. Here, the BSS section is a place 
created to place the static variables or a part of the program that the compiler did not initialize. 
When we checked whether the BSS section represented as ?? was contained in 10,868 files of 
the MS Keggle dataset, we found that BSS sections of over 90% were contained. 
 

  
Fig. 5. Byte structure of abnormal malware with the BSS section 

 
Table 4 shows the result of investigating whether ?? bytes are contained in 10,868 malware 

files. Table 4 is a statistics table showing how many malware files contain ?? bytes at the label 
level from Label No. 1 to 9. For example, a total of 398 files exist in the case of malware for 
Label No. 7, and 323 files contain over 90% of ??. If over 90% is ?? bytes, it is difficult to 
expect high accuracy for this file, irrespective of which image learning and classification 
system is used. Therefore, to obtain more accurate classification results in MalDC, we 
improved the accuracy by tuning various libraries, methods, models, or various parameters. 
For the images for quality improvement method, the next section describes the experimental 
method in more detail. 
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Table 4. Inclusion of the BSS section 
Label 1 2 3 4 5 6 7 8 9 

Average(%) 7 2 63 41 69 9 83 23 2 
0% 1213 2384 5 23 1 629 38 836 948 
10% 270 64 0 28 2 27 0 24 38 
20% 21 3 0 45 2 15 13 16 13 
30% 10 3 0 69 0 32 18 15 0 
40% 9 3 317 130 1 10 5 25 1 
50% 1 0 0 177 6 13 1 70 6 
60% 1 16 2437 3 5 19 0 90 3 
70% 6 2 183 0 7 3 0 134 2 
80% 0 1 0 0 14 2 0 18 2 
90% 2 2 0 0 4 1 323 0 0 

100% 8 0 0 0 0 0 0 0 0 
Sum 1541 2478 2942 475 42 751 398 1228 1013 

5.3 Training Comparison Between Fine-tuning and  From-scratch methods 
In the preceding section, we explained the difference between the fine-tuning method and 

the from-scratch method before experimenting with the fine-tuning method. The from-scratch 
method is a training method of basic CNN, which learns images and evaluates new images 
based on the results, whereas the fine-tuning method has emerged recently to increase the 
accuracy of image learning using such a neural network. 

The fine-tuning method refers to a method for learning the content learned previously again 
by leaving a checkpoint while leaving the learning results with the neural network. In general, 
the accuracy of the fine-tuning method is high; however, in some cases, the from-scratch 
method has a higher accuracy depending on the image’s shape or complexity. In this study, 
therefore, we tested both methods and measured the accuracy. This can be viewed as an 
experiment for determining which method—the fine-tuning or from-scratch method—is more 
suitable for malware image classification. 

Table 5 shows various experimental results related to this. In the first experiment, the same 
values were given for all parameters, except for the method, and the from-scratch and fine-
tuning methods were applied. In this case, the fine-tuning method showed 52% accuracy, 
which was slightly higher than that if the from-scratch method of 50%. 
 

Table 5. Comparative analysis of the fine-tuning and from scratch methods 

 
Experiment 

1 
(Same 

Parameters) 

Experiment 2 
(Changing 

Weight Decay) 

Experiment 
3 

(Changing 
Batch Size) 

Experiment 4 
(Changing Steps) 

Category Case 
1 

Case 
2 Case 1 Case 2 Case 

1 
Case 

2 
Case 

1 
Case 

2 
Case 

3 

Method Fine 
tune 

Scrat
ch 

Fine 
tune 

Scratc
h 

Scrat
ch 

Scrat
ch 

Scrat
ch 

Scrat
ch 

Scrat
ch 

Validation 800/
500 800 1000/5

00 
1000 500 500 1500 1500 1500 

Steps 1000 1000 1000 1000 1500 1500 1500 1500 2600 
Batch size 32 32 16 16 16 32 16 16 32 
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Learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Weight 
decay 

0.00
004 

0.00
004 

0.0000
4 

0.0000
1 

0.00
004 

0.00
004 

0.00
004 

0.00
004 

0.00
004 

Result 52% 50% 56% 54% 56% 57% 66% 54% 57% 
 
In the second experiment, images were learned and evaluated by changing only the weight 

decay (fine-tuning method: 0.00004 / from-scratch method: 0.00001), one of the important 
parameters in ML, under the same conditions as those used in the first experiment. In the 
accuracy results of the second experiment, both methods showed an improvement in accuracy 
compared to the results of the previous experiment. In contrast, the difference in the 
environmental variable did not result in a big difference in accuracy between the two methods. 
Like the first experiment, the fine-tuning method showed a accuracy of 56%, which was ~2% 
higher than 54% of the from-scratch method.    

The third experiment was conducted to examine the change in accuracy by changing the 
parameters in the same method. That is, in the experiment of other parameters for the from-
scratch method, the accuracy was examined according to batch size. In Cases 1 and 2, the 
batch size was set to 16 and 32, respectively, and the accuracy was found to be slightly higher 
when the batch size was larger. 

In the fourth experiment, too, the change in accuracy was measured while tuning the Steps 
parameter in the same from-scratch method. The accuracy was measured by changing the 
Steps to 1,000, 1,500, and 2,600, while all other parameters were fixed. As the value of Steps 
increased, accuracy decreased, and an accuracy of 66% was recorded when the value of Steps 
was 1,000, showing the highest value among experiments 1 through 4. 

In the next section, we detail experiments conducted to measure the accuracy according to 
the image shape. 

5.4 Experiments Based on Image Shape 
The experiments in the preceding section evaluated the accuracy based on the method of 

learning images and tuning of various parameters. The from-scratch method had the highest 
accuracy of 66% when the value of Steps was set to 1,000. However, since it is impossible to 
classify malware adequately with a model with an accuracy of 60%, we examined other 
methods that can increase accuracy. First, we experimented with the shape of imaging malware. 
In other words, we compared a method of processing with the square shape regardless of the 
image size and a method of processing with a rectangular shape of a certain size (e.g., width 
is set to 1,024 pixels). 

Table 6 shows the results of comparative experimentation with the accuracy after 
converting the image’s shape into a square and a rectangle in the process of converting 
malware binaries. The model that was evaluated after learning the images of malware 
converted into squares showed very little difference from the model evaluated after creating 
rectangular images of malware: both showed an accuracy of ~65 to 66%. Based on these 
results, we determined that the method used to create the first image with malware has no 
significant impact on the accuracy of classification. Therefore, all experiments, thereafter, 
were conducted by converting malware into square shapes in the fine-tuning method. 
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Table 6. Accuracy comparison between square and rectangle malware images  
 Case 1 Case 2 Note 

Type Square Rectangle Rectangle 
Methode Scratch Scratch Scratch 

Validation 1500 1500 1500 
Steps 1000 1000 1000 

Batch size 16 16 16 
Learning rate 0.01 0.01 0.01 
Weight decay 0.00004 0.00004 0.00004 

Result 66% 65% 66% 

5.5 Accuracy Improvement of the Model 
Although we decided to convert malware into square images in the future, because the 

accuracy shown in the experiments conducted so far remained in the 60% range, a method that 
could improve the classification accuracy of the model was required. Because the BSS section, 
i.e., the bytes represented as ??, in malware accounts for a significant portion, it is not easy to 
achieve an accuracy of 90% or more. 

In the case of BSS sections, the problem can be solved to some extent by replacing the ?? 
bytes with a specific color. The following explains each method. 
• Conversion into black: The black method inserts 0x00 in place of the ?? bytes. If this 

method is applied, files with many ?? are mostly displayed as black. As shown below, 
files in which almost all bytes are displayed as black correspond to a case in which most 
of the existing malware consists of ?? bytes. However, if the proportion of the section 
containing ?? is small, it can be used as a signature. 

• Conversion into white: The white method inserts 0xFF in place of?? bytes. This method 
has a relatively more efficient characteristic than the black method because black (0x00) 
is included more than white in the static analysis phase of malware. 

• Conversion into specific bits: The specific bit conversion method inserts a certain bit 
pattern for each label instead of replacing the ?? byte parts with black or white. For 
example, 0x10 is inserted in the ?? parts of the malware having Label No. 1, and 0x20 is 
inserted in malware of Label No. 2. Usually, patterns such as lines and planes are 
considered more important than the color of the corresponding parts during the processes 
of learning and identifying images. Therefore, the bit conversion method is likely to 
contribute to improving the accuracy of image classification. 

However, it is difficult to expect high accuracy when the quantity of data in the training 
dataset is small. To improve the image learning accuracy with a dataset having a small number 
of data, the dataset was quantitatively increased by applying a data augmentation technique. 
The data augmentation technique creates many converted images with the same label by 
applying various methods of image conversion algorithms to the original labeled images. For 
example, an image labeled as an apple is rotated to the right by 90° to create a total of four 
images. In this study, we applied the following four data augmentation techniques: crop, rotate, 
invert, and scale (CRIS) data augmentation techniques. 
• Crop: A part of an image is cropped. It is important to crop some pixels on the side so that 

the core part of the image is not lost. 
• Rotate: The image is rotated by a certain angle. In this study, it was rotated by 90° at a 

time to prevent the loss of the core part.  
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• Invert: The image is inverted; this process is also called flip. By flipping left to right or 
top to bottom, data can be obtained without loss of pixels. 

• Scale: It is a method of enlarging or reducing the image size. Similar to crop, it is 
important to enlarge or reduce in a way that the core part is not lost. 

To supplement the part where accuracy does not improve due to the existence of BSS 
sections, the dataset collected by KISA was used for CRIS data augmentation. As described 
in Section 5.1, the KISA dataset did not have any ?? bytes of the BSS section which was 
present in the MS Keggle dataset. This provides good conditions for evaluating accuracy 
improvements achieved through data augmentation or parameters without the influence of the 
BSS section. However, because the KISA dataset also has a small number of files for 
training—less than 700—and a severe imbalance between labels, it is not easy to achieve high 
accuracy with conventional ML methods. 

In this study, we used CRIS data augmentation to expand the dataset from a total of 689 
images to 7,000 images. To examine the relationship between the CRIS method and the 
insufficient dataset and find model training methods and strategies that can increase accuracy, 
we conducted experiments using various methods. Table 7 shows the results of several 
experiments conducted using the KISA ransomware dataset. 
 

Table 7. Experimental results for applying CRIS data augmentation method 
 Experiment 1 Experiment 2 Experiment 3 

Cases Case 1 Case 1 Case 1 Case 2 Case 3 
Method Fine tune Fine tune Fine tune Fine tune Fine tune 

Validation 70 700 700 700 700 
Steps 1000 / 500 1000 / 500 1000 / 500 5000 / 3000 8000 / 4000 

Batch size 64 64 64 64 64 
Learning rate 0.01 / 0.001 0.01 / 0.001 0.01 / 0.001 0.01 / 0.001 0.01 / 0.001 

Weight 
decay 0.00004 0.00004 0.00004 0.00004 0.00004 

Model InceptionV1 InceptionV1 InceptionV1 InceptionV1 InceptionV1 
Result 50% 82% 82% 82% 82% 

 
In the first experiment, 689 malware files in the KISA dataset were not converted at all and 

were applied to the TensorFlow library for learning images. The values of the parameters 
applied in the experiment for training were as follows: batch size: 64; Steps: 1,000/500; and 
learning rate: 0.01. When 70 images in the test dataset were classified, an accuracy of ~50% 
was obtained, as expected. This was not very different from the accuracy obtained by the MS 
Keggle dataset that contained BSS sections. 

In the second experiment, the number of images for ML was increased to check if the 
accuracy had improved. Here, the CRIS data augmentation technique was applied to increase 
the insufficient number of images. By applying the CRIS technique, the original images were 
expanded to ~7,000 images with the same patterns. In the dataset expanded to a total of 7,000 
images, 10%—700 images—were allocated for validation. The parameters applied in the 
preceding experiment (64 for the batch size, 1,000/500 for Steps, and 0.01 for the learning rate) 
were used for training, and the validation results showed that the image classification accuracy 
increased to 82%.  

The third experiment was conducted for three cases of changing parameters for the dataset 
expanded to 7,000 images using the CRIS technique. Under the same conditions as the second 
experiment, the experiment was conducted and accuracy was examined while the learning rate 
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was changed to 1,000, 5,000, and 8,000, and to 500, 3,000, and 4,000 in the secondary training. 
Because imbalanced labels exist in the KISA dataset, we could not achieve an accuracy higher 
than 82%, which was achieved by increasing the number of data through the CRIS technique. 
In other words, we drew a conclusion that a solution is required for imbalanced labels. 

In the early stage of developing the malware classification and inspection system using ML, 
such an imbalance problem may occur due to insufficient training data. However, this problem 
will be solved naturally if many malware data are collected and are used for the system to 
learn. To examine the accuracy improvement hindrance caused by the imbalance in the labeled 
dataset, we conducted experiments by additionally excluding the imbalanced labeled data in 
the dataset. 

Previously, Table 3 shows that the data of Label No. 3 and No. 5 are relatively smaller 
than those of other labels in the KISA dataset. In other words, the imbalance is severe in the 
case of Label Numbers. 3 and 5. In the experiment, therefore, we examined the changes in 
accuracy by performing training and validation after removing the imbalanced labeled data 
from the dataset. 

Table 8 shows the results of experiments conducted by removing the imbalanced data from 
the KISA dataset. In the first experiment, the data of imbalanced Label No. 3 were removed. 
That is, this experiment excluded Label No. 3, which has the most severely imbalanced files. 
In the KISA dataset comprising 689 files, Label No. 3 consists of 23 files. The experiment was 
conducted by applying the CRIS data augmentation technique to the dataset of 666 files, 
excluding the malware files corresponding to this label, and as a result, an accuracy of 84% 
was obtained. 
 

Table 8. Experimental results based on removal of imbalanced labels and application of dynamic 
cropping 

 Experiment 1 
(Only CRIS) 

Experiment 2 
(removal 
label 3) 

Experiment 3 
(removal 

label 3 & 5) 

Experiment 3 
(Dynamic 
Cropping) 

Method Fine tune Fine tune Fine tune Fine tune 
Validation 600 600 600 600 

Steps 1000 / 500 1000 / 500 1000 / 500 1000 / 500 
Batch size 64 64 64 64 

Learning rate 0.01 / 0.001 0.01 / 0.001 0.01 / 0.001 0.01 / 0.001 
Weight 
decay 0.00004 0.00004 0.00004 0.00004 

Model InceptionV1 InceptionV1 InceptionV1 InceptionV1 
Result 82% 84% 87% 97% 

 
Next, the second experiment was conducted by removing imbalanced Label Nos. 3 and 5 

at the same time. The dataset of Label No. 5 causes the second-greatest imbalance after the 
dataset of Label 3. Label No. 5 consists of a total of 86 malware files, accounting for 12% of 
the total malware files. When Label Nos. 3 and 5 are removed at the same time, a total of 109 
malware files are excluded from training. Therefore, the model was trained using 580 malware 
files consisting of three labels. As a result, the accuracy improved to 87%. This confirms once 
again that the existence of imbalanced labels greatly reduces the accuracy of the model 
development through ML. 

After recording an accuracy of up to 87% in the above experiment, we added one more 
experiment shown in Table 6. That is, we added an additional image dataset by slightly 
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changing the method used in the CRIS data augmentation. In the conventional CRIS method, 
a fixed starting point existed when images were processed. However, the method applied 
additionally in the experiment was a dynamic cropping method, which changes the reference 
point of the image conversion. In other words, when cropping was performed before, a certain 
size was cropped at the starting point of the image, but the dynamic cropping method applied 
in the experiment changes the cropping position to an intermediate arbitrary point. Based on 
this, 580 malware images obtained after removing Label Nos. 3 and 5 were expanded to ~6,000 
images. The accuracy confirmed through the experiment was 97%, the highest accuracy 
measured in this study. When the CRIS method was applied to malware images, as a result of 
applying various changes to the cropping method, a very high accuracy was recorded with an 
extremely small number of malware images for training—580 original files. 

6. Conclusion 
ML has been in the spotlight as the most feasible solution for defense against malware 

attacks, which are continuously increasing and becoming more complex. Research is being 
actively conducted in South Korea and other countries to identify malware using AI and ML. 
To develop a system capable of classifying malware using ML and even discover new malware, 
we developed the MalDC system that creates high-quality malware image datasets for training 
by converting malware into images and then preprocessing the obtained image dataset. MalDC 
provides a strategy for classifying malware with high accuracy through experiments conducted 
using the MS Kaggle dataset and the KISA ransomware dataset, thereby verifying the 
feasibility of the proposed system.   

Research on malware analysis using ML requires the consideration of two main factors. 
First, the method of converting malware into images should be developed. Through 
experimental results, we found that it is important to determine the width value such that the 
unique signatures of malware can be visualized when converting malware into images for 
MalDC. If the most appropriate images can be created by flexibly changing the width, the 
accuracy of the malware classification using ML will increase. This is because the malicious 
code exists in a certain part of the malware because a malware is designed to alter regular 
software and perform malicious activities. Therefore, if information regarding the part where 
the malicious code is located can be found, a higher accuracy can be achieved. Furthermore, 
we found that the accurate selection of the locations of four sections constituting a malicious 
PE file and the method of processing the BSS section are factors that affect the accuracy. 

Second, accuracy can be increased by improving the quantity and quality of the malware 
image dataset. This is generally true for all applications using ML. Because a sufficient amount 
of malware could not be used to train the ML model in MalDC, we conducted various 
experiments to solve the insufficient quantity and quality problem of training data. According 
to our experimental results, the use of the fine-tuning method for learning of malware images 
led to a relatively high accuracy. The CRIS data augmentation method was used to expand the 
size of the malware image dataset and secure quality, and a high-quality dataset of 689 
malware files without BSS sections provided by KISA was used by removing imbalanced 
labeled data. As a result, an accuracy of 97% was achieved. 

MalDC showed that, unlike conventional static analysis and dynamic analysis, ML can be 
used to divide the malware into groups based on the same malicious behaviors and ultimately 
discover new malware. When a malware classification model is trained using ML, the accuracy 
may vary significantly depending on the data preprocessing method used. In the future, we 
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plan to investigate methods to perform high-quality data augmentation by preprocessing 
malware images in a more sophisticated manner.  
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