• Title/Summary/Keyword: major ions

Search Result 408, Processing Time 0.037 seconds

Luminescence Characterization of SrAl2O4:Ho3+ Green Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성)

  • Jung, Kyeong Youl;Kim, Woo Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.620-626
    • /
    • 2015
  • $Ho^{3+}$ doped $SrAl_2O_4$ upconversion phosphor powders were synthesized by spray pyrolysis, and the crystallographic properties and luminescence characteristics were examined by varying activator concentrations and heattreatment temperatures. The effect of organic additives on the crystal structure and luminescent properties was also investigated. $SrAl_2O_4:Ho^{3+}$ powders showed intensive green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$. The optimal $Ho^{3+}$ concentration in order to achieve the highest luminescence was 0.1%. Over this concentration, emission intensities were largely diminished via a concentration quenching due to dipole-dipole interaction between activator ions. According to the dependence of emission intensity on the pumping power of a laser diode, it was clear that the upconversion of $SrAl_2O_4:Ho^{3+}$ occurred via the ground state absorption-excited state absorption processes involving two near-IR photons. Synthesized powders were monoclinic as a major phase, having some hexagonal phase. The increase of heat-treatment temperatures from $1000^{\circ}C$ to $1350^{\circ}C$ led to crystallinity enhancement of monoclinic phase, reducing hexagonal phase. The hexagonal phase, however, did not disappear even at $1350^{\circ}C$. When both citric acid (CA) and ethylene glycol (EG) were added to the spray solution, the resulting powders had pure monoclinic phase without forming hexagonal phase, and led to largely enhancement of crystallinity. Also, N,N-Dimethylformamide (DMF) addition to the spray solution containing both CA and EG made it possible to effectively reduce the surface area of $SrAl_2O_4:Ho^{3+}$ powders. Consequently, the $SrAl_2O_4:Ho^{3+}$ powders prepared by using the spray solution containing CA/EG/DMF mixture as the organic additives showed about 168% improved luminescence compared to the phosphor prepared without organic additives. It was concluded that both the increased crystallinity of high-purity monoclinic phase and the decrease of surface area were attributed to the large enhancement of upconversion luminescence.

Hydrogeochemistry and Origin of $CO_2$ and Noble Gases in the Dalki Carbonate Waters of the Chungsong Area (청송 달기탄산약수의 수리지화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.123-134
    • /
    • 2012
  • Hydrochemical analyses, carbon isotopic (${\delta}^{13}C_{DIC}$) analyses, and noble gas isotopic ($^3He/^4He$ and $^4He/^{20}Ne$) analyses of the Dalki carbonate waters in the Chungsong area were carried out to elucidate their hydrochemical composition and to determine the source of $CO_2$ gas and noble gases. The carbonate waters have a pH of between 5.93 and 6.33, and an electrical conductivity 1950 to $3030{\mu}S/cm$. The chemical composition of all carbonate waters was Ca(Mg)-$HCO_3$, with a high Na content. The contents of Fe, Mn, and As in some carbonate waters exceed the limit stipulated for drinking water. The concentrations of major ions are slightly higher than those reported previously. The ${\delta}^{13}C_{DIC}$ values range from -6.70‰ to -4.47‰, indicating that the carbon originated from a deep-seated source. The $^3He/^4He$ and $^4He/^{20}Ne$ ratios vary from $7.67{\times}10^{-6}$ to $8.38{\times}10^{-6}$ and from 21.32 to 725.7, respectively. On the $^3He/^4He$ versus $^4He/^{20}Ne$ diagram, the noble gas isotope ratios plot in the field of a deep-seated source, such as mantle or magma. We therefore conclude that $CO_2$ gas and noble gas in the Dalki carbonate waters originated from a deep-seated source, rather than an inorganic $CO_2$ origin as suggested in a previous study.

Chemical characteristics of Rainwater in Suwon (수원지역 강우의 화학적 특성)

  • Lee, Jong-Sik;Kim, Jin-Ho;Jung, Goo-Bok;Kim, Min-Kyeong;Yu, Sun-Gang;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.239-244
    • /
    • 2008
  • To evaluate the acidity and chemical characteristics of rainwater in Korea, its pH and ion concentrations were investigated in Suwon from April to December, 2006. In addition, to estimate the contribution of ions on its acidity, ion composition and neutralization effect of major cations were investigated. Ion balance and electrical conductivity balance between measured and estimated values showed a high correlation. The mean pH and EC in rainwater collected during the investigation periods were 4.7 and $17.6{\mu}S\;cm^{-1}$, respectively. The monthly variation in EC showed a clear seasonal pattern, which had the lowest value of $9.1{\mu}S\;cm^{-1}$ in July and increased remarkably in November. $Na^+$ was the most abundant cation and followed by $NH_4{^+}>Ca^{2+}>H^+>Mg^{2+}>K^+$. Among them, $Na^+$ and $NH_4{^+}$ accounted for more than 65% of the total cations. In case of anions, the relative abundance was $SO_4{^{2-}}>NO_3{^-}>Cl^-$. About 67% of the total anions in rainwater was $SO_4{^{2-}}$, which showed $119.0{\mu}eq\;L^{-1}$ as mean value during the monitoring periods. Furthermore, 94% of the soluble sulfate in rainwater was identified as nss-$SO_4{^{2-}}$(non-sea salt sulfate). We also found that $NH_4{^+}$ and $Ca^{2+}$ contributed greatly in neutralizing the rain acidity, especially in dry season.

Understanding Chemical Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern using Factor and Cluster Analyses (인자 및 군집분석을 통한 해안 LPG공동 유출수 및 지하수 수질특성의 이해)

  • Jo, Yun-Ju;Lee, Jin-Yong
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.599-608
    • /
    • 2009
  • This study was conducted to examine chemical characteristics and correlations among seepage water, subsurface waters and inland groundwater in and around a coastal underground LPG cavern using factor and cluster analyses. The study area is located in western coast of Incheon metropolitan city and is about 8 km off the coast. The LPG cavern storing propane and butane was built beneath artificially reclaimed island. Mean bathymetry is 8.5 m and maximum sea level change is 10 m. Water sampling was conducted in May and August, 2006 from 22 sampling points. Correlation analysis showed strong correlations among $Fe^{2+}$ and $Mn^{2+}$ (r=0.83~0.99), and Na and Cl (r=0.70~0.97), which indicated reductive dissolution of iron and manganese bearing minerals and seawater ingression effect, respectively. According to factor analysis, Factors 1 (May) and I (August) showed high loadings for parameters representing seawater ingression into the cavern and effect of submarine groundwater discharge, respectively while Factors 2 and IV showed high loadings for those representing oxidation condition (DO and ORP). Factors 4 and II have large positive loadings for $Fe^{2+}$ and $Mn^{2+}$. The increase of $Fe^{2+}$ and $Mn^{2+}$ was related to decomposition of organic matter and subsequent their dissolution under reduced condition. Cluster analysis showed the resulting 6 groups for May and 5 groups for August, which mainly included groups of inland groundwater, cavern seepage water, sea water and subsurface water in the LPG storage cavern. Subsurface water (Group 2 and Group III) around the underground storage cavern showed high EC and major ions contents, which represents the seawater effect. Cavern seepage water (Group 5 and Group II) showed a reduced condition (low DO and negative ORP) and higher levels of $Fe^{2+}$ and $Mn^{2+}$.

Degradation Mechanisms of TCE in Cement/Fe(II) Systems (시멘트/Fe(II) 시스템에서의 TCE 분해 기작)

  • Lee, Yun-Mo;Kang, Wan-Hyup;Choi, Won-Ho;Hwang, In-Sung;Park, Joo-Yang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.778-782
    • /
    • 2007
  • This study investigated the dechlorination mechanisms of TCE by Fe(II) associated with cement. Batch slurry experiments were peformed to investigate the behaviors of selected ions; Fe(II), Fe(III), $Ca^{2+}$, $SO_4^{2-}$ in cement/Fe(II) system. The kinetic experiments of TCE in cement/Fe(II) systems showed that injected Fe(II) was mostly sorbed on cement within 0.5 day and 90% of injected 200 mM sulfate was sorbed on cement within 0.5 day when $[TCE]_0$ = 0.25 mM and $[Fe(II)]_0$ = 200 mM. The kinetic experiments of TCE in hematite/CaO/Fe((II) systems were conducted for simulation of cement/Fe(II) system. Calcium oxide that is one of the major components in cement hydration reactions or has a reactivity in limited conditions. Hematite assumed the ferric iron oxide component of cement. The reactivities observed in hematite/CaO/Fe(II) system were comparable to those reported for cement/Fe(II) systems containing similar molar amounts of Fe(II). The behavior of Fe(II) and $SO_4^{2-}$ sorbed on solid phase at an early stage of reaction in hematite/CaO/Fe(II) system was similar to that of cement/Fe(II) system. Ferric ion was released from hematite at an early period of reaction at low pH. The experimental evidence of kinetic test using hematite/CaO/Fe(II) system implies that the reactive reductant is a mixed-valent Fe(II)-Fe(III) mineral, which may be similar to green rust. Fe(II) sorbed on cement can be converted to new mineral phase having a reactivity such as Fe(II)-Fe(III) (hydr)oxides in cement/Fe(II) systems.

Isolation and Chemical Analysis of Potent Anti-Complementary Polysaccharides from Fruiting Bodies of the Fomes fomentarius (말굽버섯 자실체에서 분리한 항보체 활성 다당체의 화학적 분석)

  • Park, Jung-Keun;Park, Kwe-Won;Shin, Kwang-Soon;Lee, Chang-Muk;Seok, Soon-Ja;Kim, Jeong-Bong;Koo, Bon-Sung;Han, Bum-Soo;Yoon, Sang-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.198-206
    • /
    • 2013
  • The five anti-complementary polysaccharides (MFKF-NP, MFKF-AP1${\alpha}$, ${\beta}$, and MFKF-AP2${\alpha}$, ${\beta}$) were separated from hot water extracts of fruiting bodies of Fomes fomentarius by two subsequent column chromatography using DEAE-sepharose FF and Concanavalin A-sepharose 4B. The order of anti-complementary activity was MFKF-AP1${\beta}$ > MFKF-AP1${\alpha}$ > MFKF-AP2${\alpha}$ > MFKF-AP2${\beta}$ > MFKF-NP > Polysaccharide Krestine (PSK). Especially, MFKF-AP1${\beta}$ among those showed the most excellent anti-complementary activity (70% of ITCH50 value at $20{\mu}g/ml$). The monosaccharide composition analysis by gas chromatography indicates that MFKF-AP1${\alpha}$ and ${\beta}$ are a kind of homoxylan consisted mainly of xylose above 97%. Molecular weight of MFKF-AP1${\beta}$, major anti-complementary polysaccharide, was estimated to be about 12,000 by high performance liquid chromatography (HPLC). After the incubation of the serum with MFKF-AP1${\beta}$ in the presence or absence of $Mg^{++}$ and $Ca^{++}$ ions, its anti-complementary activity was investigated. This result indicated that MFKF-AP1${\beta}$ seems to be activator both on the classical and the alternative pathway of complement activation.

The Optimal Combination of Major Nutrients Computed by the Homés Systematic Variation Technique -III. Determination of the Optimal Combination of Σ Anion : Σ Cation and the Optimal Application Rate of Total Ions on the Various Grassland Soils (Homés방법(方法)에 의(依)한 다량요소(多量要素)의 적정(適正) 시비비율(施肥比率) 결정(決定)에 관한 연구 -III. 초지토양별(草地土壤別) 음(陰)이온 성분총량(成分總量) : 양(陽)이온 성분총량(成分總量) 적정(適正) 시비비율(施肥比率) 및 적정(適正) 총시비량(總施肥量))

  • Jung, Yeun-Kyu;Kim, Sang-Chul;Weinberger, P.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.3
    • /
    • pp.178-187
    • /
    • 1982
  • This pot experiment was undertaken to find out the optimum fertilization ratios of total anions to total cations, ${\Sigma}A/{\Sigma}C$, and the optimum application rates of total macro-nutrients in various soil conditions. Soil samples were collected from uncultivated mountains and hills where grassland development was under consideration. 1. The optimum application ratios of ${\Sigma}A/{\Sigma}C$ and the optimum application rates of total macro-nutrients for the high yields of mixed grass-clover sward in various grassland soils were computed by the Hom$\acute{e}$s systematic variation techniqu.e. 2. With respect to the optimum application ratios of ${\Sigma}A/{\Sigma}C$ in fertilization in a mixed grass-clover sward, the grass yield and botanical composition were distinctly proportional to ${\Sigma}A$ wheras the regume yield and botanical composition were proportional to ${\Sigma}C$. 3. The optimum fertilization rates of total macro-nutrients for the high legume yields were depended upon ${\Sigma}A/{\Sigma}C$ ratios. These optimum rates were in proportional to ${\Sigma}C$ ratios and were inversely proportional to ${\Sigma}A$ ratios. 4. The efficiencies of ${\Sigma}A$ and ${\Sigma}C$ in relation to the grass and grass plus legume yields were highest with the low ratios of each other and the low fertilization rates of total macronutrients. The ${\Sigma}A$ effieiency in the legume yield tended to be similar to that of ${\Sigma}A$ related to the grass yield noted above except Daegu soil. The ${\Sigma}C$ efficiency, however, was proportional to the ${\Sigma}C$ ratio, although that was varied with the fertilization rates of total macro-nutrients and with the kinds of soils. 5. The yield of mixed forages, yield component, and botanical composition in a mixed sward were greatly influenced by the ${\Sigma}A/{\Sigma}C$ ratios, the fertilization rates of total macronutrients, and the interactions of ratio and rate noted above. In addition, these effects were generally different and opposite according to grass and legume.

  • PDF

The Production and Geochemistry of Evaporite from the Acid Mine Drainage (산성 광산배수로부터 형성되는 증발잔류광물의 생성량과 지구화학)

  • Park Cheon-Young;Cho Kap-Jin;Kim Seoung-Ku
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.524-540
    • /
    • 2005
  • This study has focused on the amount of evaporites and geochemical characteritics of evaporites from the acid mine drainage and on the variation of constituents in acid mine drainage during evaporation. The various colors of evaporites are frequently observed at the rock surfaces contacting acid mine drainage. In order to produce evaporites in the laboratory, acid mine drainages were sampled from the abandoned mine areas (GTa, GTb, GH and GB) and air-dried at room temperature. During the evaporation of acid mine drainages, TDS, EC values and the concentrations of major and minor ions increased, whereas ER and DO values decreased with time. The concentration of Fe increased gradually with evaporation time in the GTb and GB, whereas GH founded in one day but rapidly not detected in the other day after due to removal of Fe by formation-precipitation of amorphous Fe hydroxide. The amounts of the evaporites were produced in amounts of 4 g (GTa), 5 g (GB), 15 g (GH), and 24 g (GTb) from 4 liter of acid mine drainage after 80 days of the evaporation, respectively. In linear analysis from the products with the parameters which are the EC, TDS, salinity, ER, DO and pH contents in field, the determination coefficients were 0.98, 0.99, 0.98, 0.88, 0.89, and 0.25 respectively. If we measure the parameters in field, it would be easy to estimate the amount of evaporites in acid mine drainage. Gypsum and epsomite were identified in all of the evaporites by x-ray powder diffraction studies. Evaporite (GTb) was heated at 52, 65, 70, 95, 150, 250, and 350oC for one hour in electrical furnaces. Gypsum, $CaSO_4\cdot1/2H_2O$ and kieserite were identified in the heated evaporite by XRD. With increased heating temperature, the intensity of the peak at $7.66/AA$ (diagnostic peak of gypsum), the peak at 5.59A ($CaSO_4{\cdot}1/2H_2O)$ and the peak at $4.83{\AA}$ (kieserite) decreased in x-ray diffraction due to dehydration. In the SEM and EDS analysis for the evaporite, gypsum of well-crystallized, radiating cluster of fibrous, acicular, and columnar shapes were observed in all samples. Ca was not detected in the EDS analysis of the flower structures of GTb. Because of that, the evaporite with flower structures is thought to be eposmite.

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Air Pollutants Levels and Physiological Variation of Ginkgo biloba in Chuncheon (춘천지역의 대기오염도와 은행나무의 생리적 변화에 관한 연구)

  • Lee Sang-Deok;Joo Yeong-Teuk;Han Jin-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.141-147
    • /
    • 2005
  • This study investigated air pollutant levels and physiological variation of Ginkgo biloba in Chuncheon. The results were as follows: The annual average concentrations of $SO_2,\;NO_2\;and\;PM10$ were 0.004ppm, 0.013 ppm and $66{\mu}g/m^3$, respectively. The volume weighted average concentrations of ionic components were $SO_4\;^{2-}\;3.584 mg/m^3,\;NO_3^-\; 2.803 mg/m^3,\;Cl^-\;1.485 mg/m^3\;and\;NH_4\;^+\;0.998 mgg/m^3$ in precipitation. The annual wet deposition amount of the major ions was shown to be $SO_4^{2-}\;3.865g/m^2/yr,\;NO_3^-\;2.924g/m^2/yr,\;Cl^-\;2.773g/m^2/yr\;and\; NH_4\;^+\;1.485 g/m^2/yr$ during this study period. The seasonal averaged pH in leaves were spring pH 5.9 0.5, summer pH 5.5 0.4 and fall pH 5.1 0.3. The seasonal average water soluble sulfur content in leaves were spring 0.012 0.004%, summer $0.012\;0.002\%\;and\;fall\;0.020\;0.007\%$. The seasonal average water soluble sulfur content in bark were spring $0.0071\;0.0003\%,\;summer\; 0.0066\;0.0004\%,\;fall\;0.0063\;0.0004\%\;and\;winter\;0.0071\;0.0003\%$.