The Production and Geochemistry of Evaporite from the Acid Mine Drainage

산성 광산배수로부터 형성되는 증발잔류광물의 생성량과 지구화학

  • Published : 2005.08.01

Abstract

This study has focused on the amount of evaporites and geochemical characteritics of evaporites from the acid mine drainage and on the variation of constituents in acid mine drainage during evaporation. The various colors of evaporites are frequently observed at the rock surfaces contacting acid mine drainage. In order to produce evaporites in the laboratory, acid mine drainages were sampled from the abandoned mine areas (GTa, GTb, GH and GB) and air-dried at room temperature. During the evaporation of acid mine drainages, TDS, EC values and the concentrations of major and minor ions increased, whereas ER and DO values decreased with time. The concentration of Fe increased gradually with evaporation time in the GTb and GB, whereas GH founded in one day but rapidly not detected in the other day after due to removal of Fe by formation-precipitation of amorphous Fe hydroxide. The amounts of the evaporites were produced in amounts of 4 g (GTa), 5 g (GB), 15 g (GH), and 24 g (GTb) from 4 liter of acid mine drainage after 80 days of the evaporation, respectively. In linear analysis from the products with the parameters which are the EC, TDS, salinity, ER, DO and pH contents in field, the determination coefficients were 0.98, 0.99, 0.98, 0.88, 0.89, and 0.25 respectively. If we measure the parameters in field, it would be easy to estimate the amount of evaporites in acid mine drainage. Gypsum and epsomite were identified in all of the evaporites by x-ray powder diffraction studies. Evaporite (GTb) was heated at 52, 65, 70, 95, 150, 250, and 350oC for one hour in electrical furnaces. Gypsum, $CaSO_4\cdot1/2H_2O$ and kieserite were identified in the heated evaporite by XRD. With increased heating temperature, the intensity of the peak at $7.66/AA$ (diagnostic peak of gypsum), the peak at 5.59A ($CaSO_4{\cdot}1/2H_2O)$ and the peak at $4.83{\AA}$ (kieserite) decreased in x-ray diffraction due to dehydration. In the SEM and EDS analysis for the evaporite, gypsum of well-crystallized, radiating cluster of fibrous, acicular, and columnar shapes were observed in all samples. Ca was not detected in the EDS analysis of the flower structures of GTb. Because of that, the evaporite with flower structures is thought to be eposmite.

산성광산배수가 증발되어 형성된 증발잔류광믈의 생성량과 지구화학적 특성 그리고 산성광산배수의 성분변화를 고찰하였다. 여러 종류의 색을 띄는 증발잔류광물들이 산성광산배수와 접촉하는 암석표면에서 관찰된다. 실험실에서 증발잔류광물을 형성시키기 위하여 폐석탄광(GTa, GTb, GH 및 GB)에서 산성광산배수를 채취하여 자연 건조시켰다. 산성 광산배수가 증발되는 동안 TDS, EC, 주요성분이온과 미량성분이온들의 함량은 증가하지만 E.R.과 DO 값은 증발시간과 함께 감소한다. GTb와 GB 시료의 Fe 농도는 증발 시간과 함께 서서히 증가하나 GH 시료는 증발하루에는 Fe이가 검출되나 그 이후에는 갑자기 검출되지 않는다. 이와 같이 Fe 성분이 검출되지 않는 이유는 비정질 철수산화물이 형성되어 침전되기 때문인 것으로 판단된다. 4 l의 산성광산배수를 80일 동안 자연 건조시킨 후 얻어진 증발잔류광물의 무게는 4 g(GTa), 5 g(GB), 15 g(GH) 및 24 g(GTb)를 각각 얻었다. 생성된 증발잔류광물의 무게와 현장에서 측정한 EC, TDS, 염도, ER, DO 및 pH와의 회귀분석에서 결정계수가 각각 0.98, 0.99, 0.98, 0.88, 0.89 및 0.25로 나타난다. 현장에서 이들 파라메타를 측정한다면 산성광산배수로부터 형성되는 증발잔류광물의 양을 추정하는데 쉽게 이용할 수 있을 것이다. 증발잔류광물의 모든 시료에서 석고와 사리염이 들어 있음을 X-선 회절법으로 확인하였다. GTb 시료를 52, 65, 70, 95, 150, 250 및 $350^{\circ}C$에서 각각 1 시간씩 가열한 후 XRD분석한 결과 석고, $CaSO_4{\cdot}1/2H_2O$ 및 케서라이트(kieserite)가 있음을 확인하였다. 가열온도가 증가할수록 석고를 지시해주는 $7.66{\AA}$의 강도, $CaSO_4{\cdot}1/2H_2O$를 지시해주는 $5.59{\AA}$ 강도 그리고 케서라이트를 지시하는 $4.83{\AA}$ 강도 크기가 탈수작용으로 인하여 서서히 감소한다. SEM 및 EDS분석에서 석고로 판단되는 방사상의 결정 집합체들이 침상과 주상의 결정들로 구성되어 있다. 꽃 모양의 구조를 보이는 GTb 시료는 EDS분석에서 Ca 성분이 검출되지 않는다. Ca 성분이 검출되지 않는 것으로 보아 이 꽃 모양의 증발잔류광물은 사리염으로 판단된다.

Keywords

References

  1. 김건영, 고용권, 최현수, 김천수, 배대석, 2000, 중온지역 탄산온천수의 탄산염 침전물에 관한 광물학적 및 지구화학적 연구. 한국광물학회지 13 (1), 22-36
  2. 김정진, 김수진, 김윤경, 2003, 동해탄광 일대 산성광산배수의 지화학적 특성 및 증발잔류물에 대한 광물학적 연구. 자원환경지질 36 (2), 103-109
  3. 박상준, 황지호, 최선규, 오창환, 1999, 임천광산 광미 적치장 주변 2차 광물 등에 대한 생성 환경. 대한환경지질학회.한국자원공학회.한국지구물리탐사학회공 동학술발표회논문집, 충남대학교 49 p
  4. 박천영, 김성구, 2002, 광주시 운정동 위생 쓰레기 매립장 침출수에 대한 지구화학. 한국 자원공학회지 39 (2), 98-111
  5. 박천영, 박신숙, 김성구, 조갑진, 김성수, 2003, 증발작용에 따른 광산배수의 수질변화와 증발잔류광물에 대한 지구화학. 한국지구시스템공학회지 40 (5). 329-344
  6. 박천영, 정연중, 최낙철, 1999, Yellowboy에 대한 지구화학적 연구. 한국자원공학회지 36 (4), 299-312
  7. 박천영, 정연중, 최낙철, 강지성, 박신숙, 김성구, 2000a, 상동 폐탄광지역 광산산성배수와 증 발광물에 대한 지구화학. 한국자원공학회지 37 (4), 249-261
  8. 박천영, 정연중, 강지성, 2000b, 화순 폐탄광지역 광산배수와 침전 및 증발잔류광물에 대한 지구화학적 및 광물학적 연구. 자원환경지질 33 (5), 391-404
  9. 전효택, 문희수, 김규한, 정명채, 1998, 환경지질학. 서울대학교출판부, 529 p
  10. Bhatti, T. M., Bigham, J. M., Vuorinen, A. and Tuovinen, O. H., 1994, Alteration of mica and feldspar associated with the microbiological oxidation of pyrrhotite and pyrite. In
  11. Bigham, J. M., Schwertmann, U., Carsion, L. and Murad, E., 1990, A poorly crystallized oxyhydroxyaulfate of iron formed by bacterial oxidation of Fe (II) in acid mine waters. Geochimica et Cosmochimica Acta, 54, 2743-2758 https://doi.org/10.1016/0016-7037(90)90009-A
  12. Carson, C. D., Fanning, D. S. and Dixon, J. B., 1982, Alfisols and Ultisols with acid sulfate weathering features in Texas. In Kittrick, J. A., Fanning, D. S. and Hossner, L. R. (ed), Acid sulfate weathering, SSSA Special Publication Number 10. 127-146
  13. Code of Fedral Regulations, 1986, Office of the Federal Register National Archives and Records Administration. Washington D.C., 662 p
  14. Dixon, J. B., Hossner, L. R., Senkayi, A. L. and Egashira, K., 1982, Mineralogical properties of lignite overburden as they relate to mine spoil reclamation. In Kittrick, J. A., Fanning, D. S. and Hossner, L. R. (ed), Acid sulfate weathering, SSSA Special Publication Number 10. 169-191
  15. Doner, H. E. and Lynn, W. C., 1989, Carbonate, halite, sulfate, and sulfide minerals. In Dixon, J. B. and Weed, S. B. (ed), Minerals in soil environments, Number 1 in the Soil Science Society of America Book Series, 279-330
  16. Filipek, L. H. Nodstrom, D. K. and Ficklin, W. H., 1987, Interaction of acid mine drainage with waters and sediments of West Squaw creek in the West Shasta mining district, California. Environmental Science and Technology 21, 388-396 https://doi.org/10.1021/es00158a009
  17. Fitzpatrick, R. W., Naidu, R. and Self, P. G., 1992, Iron deposits and microorganisms in saline sulfidic soils with altered soil water regimes in South Australia. In Skinner, H. C. W. and Fitzpatrick, R. W., (ed) Biomineralization processes of iron and manganese: modern and ancient environments, Catena Supplement 21, 263-286
  18. Fritz, S. J., 1994, A survey of charge-balance errors on published analyses of potable ground and surface waters, Ground Water 32 (4), 539-546 https://doi.org/10.1111/j.1745-6584.1994.tb00888.x
  19. Hem, J. D., 1985, Study and interpretation of the chemical characteristics of natural waters. U. S Geological Survey Water-Supply Paper, 2254 p
  20. Henmi, T., Wells, N., Chids, C. and Parfit, R. L., 1980, Poorly-ordered iron-rich precipitates from spring and streams on andesitic volcanoes. Geochimica et Cosomochimica Acta. 44, 365-372 https://doi.org/10.1016/0016-7037(80)90144-1
  21. Hounslow, A. W., 1995, Water quality data: analysis and interpretation. Lewis Publishers, 397 p
  22. Hurlbut, C. S. and Klein, C., 1977, Manual of mineralogy. John Wiley & Sons, 532 p
  23. Jackson, G. B., 1993, Applied water and spentwater chemistry - a laboratory manual. Van Nostrand Reinhold, 688 p
  24. Kennedy, V. C., Zellweger, G. W. and Jones, B. F., 1974, Filter pore-size effects on the analysis of Al, Fe, Mn, and Ti in water. Water Resources Research 10 (4), 785-790 https://doi.org/10.1029/WR010i004p00785
  25. Matthess, G, 1982, The properties of groundwater. John Wiley & Sons, New York, 406 p
  26. Mazor, E, 1997, Chemical and isotopic groundwater hydrology. Marcel Dekker, Inc. 413 p
  27. McCarty, D. K., Moore, J. N. and Marcus, W. A., 1998, Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extractions. Applied Geochemistry 13. 165-176 https://doi.org/10.1016/S0883-2927(97)00067-X
  28. Nordstrom, D. K., 1982, Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In Kittrick, J. A., Fanning, D. S. and Hossner, L. R., (ed), Acid sulfate weathering, Soil Science Society of America Special Publishing Number 10, 37-56
  29. Nordstrom, D. K., Puigdomenech, I. and McNutt, R. H., 1990, Geochemical modelling of water-rock interactions at the Osamu Utsumi mine and Morro do Ferro analogue study sites, Pocos de caldas. Brazil. SKB Technical Report 90-23, 33 p
  30. Roussel, C., Bril, H. and Fernandez, A., 1999, Evolution of sulphides-rich mine tailings and immobilization of As and Fe. Earth & Planetary Sciences 329, 787-794 https://doi.org/10.1016/S1251-8050(00)88633-4
  31. Salomons, W., 1995, Environmental impact of metals derived from mining activites: processes, predictions, prevention. Journal of Geochemical Exploration 52, 5-23 https://doi.org/10.1016/0375-6742(94)00039-E
  32. Smykatz-Kloss, W., 1974, Differential thermal analysis: application and results in mineralogy. Springer-Verlag Berlin Heidelberg New York, 185 p
  33. Snoeyink,V. L. and Jenkins, D., 1980, Water chemistry. John Wiley and Sons 558 p
  34. Sullivan, P. J., Mattigod, S. V. and Sobek, A. A., 1986, Dissolution of iron sulfates from pyrite coal waste. Environmental Science and Technology 20 (10), 1013-1018 https://doi.org/10.1021/es00152a008
  35. Sullvian, P. J., Yelton, J. L. and Reddy, K. J., 1988, Iron sulfide oxidation and the chemistry of acid generation. Environmental Geology and Water Science 11 (3), 289-295 https://doi.org/10.1007/BF02574818