• 제목/요약/키워드: major ions

검색결과 410건 처리시간 0.029초

최근에 밝혀진 금속이온 수송체 (Metal Ion Transporters Identified in Recent Studies)

  • 정재훈
    • Biomolecules & Therapeutics
    • /
    • 제10권4호
    • /
    • pp.293-302
    • /
    • 2002
  • The classical concept for iron uptake into mammalian cells has been the endocytosis of transferrin( $T_{f}$ )-bound F $e^{3+}$ via the $T_{f}$ - $T_{f}$ receptor cycle. In this case, we could not explain the uptake of F $e^{2+}$ ion and the export of iron from endosome. Studies on iron transport revealed that other transport system exists in epithelial cells of the intestine. One of non- $T_{f}$ -receptor-mediated transport systems is Nramp2/DMT1/DCT1 which transports M $n^{++}$, $Mg^{++}$, Z $n^{++}$, $Co^{++}$, N $i^{++}$ or C $u^{++}$ ion as well as F $e^{+2}$ ion. DMT1 was cloned from intestines of iron-deficient rats and shown to be a hydrogen ion-coupled iron transporter and a protein regulated by absorbed dietary iron. DMT1 is founded in other cells such as cortical and hippocampal glial cells as well as endothelial cells in duodenum. Two F $e^{3+}$ ion bound to transferrin( $T_{f}$ ) are taken up via the $T_{f}$ - $T_{f}$ receptor cycle in the intestinal epithelial cell. F $e^{3+}$ in endosome was converted to F $e^{2+}$ ion, and then exported to cytosol via DMT1. F $e^{2+}$ ion is taken up into cytosol via DMT1. Several other transporters such as FET, FRE, CCC2, AFT1, SMF, FTR, ZER, ZIP, ZnT and CTR have been reported recently and dysfunction of the transporters are related with diseases containing Wilson's disease, Menkes disease and hemochromatosis. Evidences from several studies strongly suggest that DMT1 is the major transporter of iron in the intestine and functions critically in transport of other metal ions.

Cathodic Properties of $LiCoO_2$ Synthesized by a Sol-Gel Method for Lithium Ion Battery

  • 조봉준;정의덕;심윤보
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.39-44
    • /
    • 1998
  • $LiCoO_2$ powder was synthesized in an aqueous solution by a sol-gel method and used as a cathode active material for a lithium ion rechargeable battery. The layered $LiCoO_2$ powders were prepared by igniting in air for 12 hrs at 600 ℃ $(600-LiCoO_2)$ and 850 ℃ $(850-LiCoO_2)$. The structure of the $LiCoO_2$ powder was assigned to the space group R bar 3 m (lattice parameters a=2.814 Å and c=14.04Å). The SEM pictures of $600-LiCoO_2$ revealed homogeneous and fine particles of about 1 μm in diameter. Cyclic voltammograms (CVs) of $600-LiCoO_2$ electrode displayed a set of redox peaks at 3.80/4.05 V due to the intercalation/deintercalation of the lithium ions into/out of the $LiCoO_2$ structure. CVs for the $850-LiCoO_2$ electrode had a major set of redox peaks at 3.88/4.13 V, and two small set of redox peaks at 4.18/4.42 V and 4.05/4.25 V due to phase transitions. The initial charge-discharge capacity was 156-132 mAh/g for the $600-LiCoO_2$ electrode and 158-131 mAh/g for the $850-LiCoO_2$ electrode at the current density of 0.2 mA/cm2. The cycleability of the cell consisting of the $600-LiCoO_2$ electrode was better than that of the $850-LiCoO_2$. The diffusion coefficient of the $Li^+$ ion in the $600-LiCoO_2$ electrode was calculated as $4.6{\times}10^{-8}\; cm^2/sec$.

$A_{23187}$과 2가 이온에 의해 일어나는 $K^{+}$ 이온과 $H^{-}$ 이온의 흐름에 미치는 Triterpenoidal Dammarane Serids의 Glycosides와 그 Aglycones의 영향 (The Action of Triterpenoidal Glycosides of Dammarane Series and Their Aglycones on $K^{+}$ and $H^{-}$ Fluxes in Erythrocytes, Induced by lonophore $A_{23187}$ and Divalent ions)

  • Kim, Yu.A.;Park, Kyeong-Mee;Kyung, Jong-Su;Hyun, Hak-Chul;Song, Yong-Bum;Shin, Han-Jae;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제20권2호
    • /
    • pp.168-172
    • /
    • 1996
  • Ginsenoside Rb,, at a concentration of 10 $\mu\textrm{g}$/ml and over, initiated the cycle of oscillation of ion flux in erythrocytes after the cells had been treated with a protonophore, carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone (FCCP) and then with a $Ca^{2+}$ ionophore, A23,3,. Its action was similar to the additional portion of $Ca^{2+}$-ionophore or $Ca^{2+}$ ion to the erythrocytes. Effects of $Rg_1$ and Rf were different from that of Rb,. They did not induce the oscillation. They, however, increased the extracellular $K^{+}$ concentration and pH without returning to the initial state in the erythrocytes processed with FCCP and $A_{23187}$. We established that ginsenosides from 20-(5)-panaxatriol family induced the membrane hyperpolarization in erythrocytes, which was attenuated by the pretreatment of $Rb_1$, a major component of 20-(5)-panaxadiol.

  • PDF

Excessive copper in feed not merely undermines animal health but affects food safety

  • Ma, Zicheng;Li, Yan;Han, Zifeng;Liu, Zhaohu;Wang, Hongyu;Meng, Fanliang;Liu, Sidang;Chen, Dawei;Liu, Mengda
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.31.1-31.12
    • /
    • 2021
  • Background: Blackened intestines in slaughtered pigs have been commonly observed in China in recent years. However, no cause has been reported. Objectives: We attempted to determine whether the blackening of the pig intestine was related to an excess of copper (Cu) in their feed. Methods: In this study, we observed and collected porcine intestines in small- and large-scale pig slaughterhouses in Shandong province from May to October 2018. Twelve types of metal ions were detected in the black intestinal samples. Results: The Cu level in the intestine samples was mostly higher than the Chinese national limit for food. Further study showed that Cu supplementation in most commercial porcine feed also exceeded the national standard. An animal model (mouse) that could mimic the intestinal blackening in pigs was established. Compared to control mice, Cu accumulated in the liver and intestines of mice fed an excessive Cu level, confirming the excessive Cu in the feed may be considered the major cause of blackened porcine intestines. Microscopic examination revealed that black intestines had many particles containing Cu in the lamina propria of the intestinal mucosa, and the intestinal mucosal epithelial cells showed degeneration and necrosis. Conclusions: In conclusion, overuse of Cu in animal feed can lead to animal poisoning and Cu accumulation in animal products. Such overuse not only harms the health of livestock but can also affect public health.

황화수소(H2S) 흡착성능 증진을 위한 하수슬러지 기반 흡착제 탄화조건 최적화 연구 (A study on the Optimization of Sewage Sludge-based Adsorbent Carbonization Condition for Improving Adsorption Capacity of Hydrogen Sulfide (H2S))

  • 최성열;장영희;김성수
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.765-771
    • /
    • 2018
  • 본 연구에서는 각종 환경기초시설에서 발생하는 악취 유발물질 중 $H_2S$를 처리하기 위한 하수슬러지 기반 흡착제의 흡착성능 증진을 위해 제조조건 중 탄화조건 최적화에 대한 연구를 수행하였다. 적용되는 흡착제는 하수처리장에서 발생하는 슬러지를 온도 및 승온속도와 같은 탄화조건을 달리하여 제조하였으며, 흡착제의 물리적 특성과 흡착성능과의 상관관계를 확인하였다. 실험결과 $10^{\circ}C/min$의 승온속도로 $900^{\circ}C$의 온도에서 탄화과정을 거친 슬러지의 흡착성능이 가장 우수하였으며, SEM, BET 분석을 통해 비표면적 및 기공특성(기공크기, 부피)이 흡착성능의 주요 인자임을 확인하였다. 최적 탄화조건 흡착제의 흡착성능을 증진시키기 위해 K 이온을 담지하였으나, 하수슬러지 기반 흡착제의 경우 큰 영향이 없는 것으로 확인하였다.

Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans

  • Jung, Ahjin;Yun, Ji-Sook;Kim, Shinae;Kim, Sang Ryong;Shin, Minsang;Cho, Dong Hyung;Choi, Kwang Shik;Chang, Jeong Ho
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.56-66
    • /
    • 2019
  • Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of $2.5{\AA}$. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (${\alpha}1-{\beta}1$) and with the ${\alpha}3$ helix, which appeared to stabilize the dimerization of CaHINT. In the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.

산화구리의 광전기화학적 거동 특성 (Photoelectrochemical Behavior of Cu2O and Its Passivation Effect)

  • 윤홍관;홍순현;김도진;김천중
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2019
  • Recent industrialization has led to a high demand for the use of fossil fuels. Therefore, the need for producing hydrogen and its utilization is essential for a sustainable society. For an eco-friendly future technology, photoelectrochemical water splitting using solar energy has proven promising amongst many other candidates. With this technique, semiconductors can be used as photocatalysts to generate electrons by light absorption, resulting in the reduction of hydrogen ions. The photocatalysts must be chemically stable, economically inexpensive and be able to utilize a wide range of light. From this perspective, cuprous oxide($Cu_2O$) is a promising p-type semiconductor because of its appropriate band gap. However, a major hindrance to the use of $Cu_2O$ is its instability at the potential in which hydrogen ion is reduced. In this study, gold is used as a bottom electrode during electrodeposition to obtain a preferential growth along the (111) plane of $Cu_2O$ while imperfections of the $Cu_2O$ thin films are removed. This study investigates the photoelectrochemical properties of $Cu_2O$. However, severe photo-induced corrosion impedes the use of $Cu_2O$ as a photoelectrode. Two candidates, $TiO_2$ and $SnO_2$, are selected for the passivation layer on $Cu_2O$ by by considering the Pourbaix-diagram. $TiO_2$ and $SnO_2$ passivation layers are deposited by atomic layer deposition(ALD) and a sputtering process, respectively. The investigation of the photoelectrochemical properties confirmed that $SnO_2$ is a good passivation layer for $Cu_2O$.

A New Extremely Halophilic, Calcium-Independent and Surfactant-Resistant Alpha-Amylase from Alkalibacterium sp. SL3

  • Wang, Guozeng;Luo, Meng;Lin, Juan;Lin, Yun;Yan, Renxiang;Streit, Wolfgang R.;Ye, Xiuyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권5호
    • /
    • pp.765-775
    • /
    • 2019
  • A new ${\alpha}$-amylase-encoding gene (amySL3) of glycoside hydrolase (GH) family 13 was identified in soda lake isolate Alkalibacterium sp. SL3. The deduced AmySL3 shares high identities (82-98%) with putative ${\alpha}$-amylases from the genus Alkalibacterium, but has low identities (<53%) with functionally characterized counterparts. amySL3 was successfully expressed in Escherichia coli, and the recombinant enzyme (rAmySL3) was purified to electrophoretic homogeneity. The optimal temperature and pH of the activity of the purified rAmySL3 were determined to be $45^{\circ}C$ and pH 7.5, respectively. rAmySL3 was found to be extremely halophilic, showing maximal enzyme activity at a nearly saturated concentration of NaCl. Its thermostability was greatly enhanced in the presence of 4 M NaCl, and it was highly stable in 5 M NaCl. Moreover, the enzyme did not require calcium ions for activity, and was strongly resistant to a range of surfactants and hydrophobic organic solvents. The major hydrolysis products of rAmySL3 from soluble starch were maltobiose and maltotriose. The high ratio of acidic amino acids and highly negative electrostatic potential surface might account for the halophilic nature of AmySL3. The extremely halophilic, calcium-independent, and surfactant-resistant properties make AmySL3 a promising candidate enzyme for both basic research and industrial applications.

NADP+-Dependent Dehydrogenase SCO3486 and Cycloisomerase SCO3480: Key Enzymes for 3,6-Anhydro-ʟ-Galactose Catabolism in Streptomyces coelicolor A3(2)

  • Tsevelkhorloo, Maral;Kim, Sang Hoon;Kang, Dae-Kyung;Lee, Chang-Ro;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.756-763
    • /
    • 2021
  • Agarose is a linear polysaccharide composed of ᴅ-galactose and 3,6-anhydro-ʟ-galactose (AHG). It is a major component of the red algal cell wall and is gaining attention as an abundant marine biomass. However, the inability to ferment AHG is considered an obstacle in the large-scale use of agarose and could be addressed by understanding AHG catabolism in agarolytic microorganisms. Since AHG catabolism was uniquely confirmed in Vibrio sp. EJY3, a gram-negative marine bacterial species, we investigated AHG metabolism in Streptomyces coelicolor A3(2), an agarolytic gram-positive soil bacterium. Based on genomic data, the SCO3486 protein (492 amino acids) and the SCO3480 protein (361 amino acids) of S. coelicolor A3(2) showed identity with H2IFE7.1 (40% identity) encoding AHG dehydrogenase and H2IFX0.1 (42% identity) encoding 3,6-anhydro-ʟ-galactonate cycloisomerase, respectively, which are involved in the initial catabolism of AHG in Vibrio sp. EJY3. Thin layer chromatography and mass spectrometry of the bioconversion products catalyzed by recombinant SCO3486 and SCO3480 proteins, revealed that SCO3486 is an AHG dehydrogenase that oxidizes AHG to 3,6-anhydro-ʟ-galactonate, and SCO3480 is a 3,6-anhydro-ʟ-galactonate cycloisomerase that converts 3,6-anhydro-ʟ-galactonate to 2-keto-3-deoxygalactonate. SCO3486 showed maximum activity at pH 6.0 at 50℃, increased activity in the presence of iron ions, and activity against various aldehyde substrates, which is quite distinct from AHG-specific H2IFE7.1 in Vibrio sp. EJY3. Therefore, the catabolic pathway of AHG seems to be similar in most agar-degrading microorganisms, but the enzymes involved appear to be very diverse.

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes

  • Kim, Hyung Gi;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.377-386
    • /
    • 2021
  • The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.