DOI QR코드

DOI QR Code

A New Extremely Halophilic, Calcium-Independent and Surfactant-Resistant Alpha-Amylase from Alkalibacterium sp. SL3

  • Wang, Guozeng (College of Biological Science and Engineering, Fuzhou University) ;
  • Luo, Meng (College of Biological Science and Engineering, Fuzhou University) ;
  • Lin, Juan (College of Biological Science and Engineering, Fuzhou University) ;
  • Lin, Yun (College of Biological Science and Engineering, Fuzhou University) ;
  • Yan, Renxiang (College of Biological Science and Engineering, Fuzhou University) ;
  • Streit, Wolfgang R. (Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg) ;
  • Ye, Xiuyun (College of Biological Science and Engineering, Fuzhou University)
  • Received : 2019.01.17
  • Accepted : 2019.04.04
  • Published : 2019.05.28

Abstract

A new ${\alpha}$-amylase-encoding gene (amySL3) of glycoside hydrolase (GH) family 13 was identified in soda lake isolate Alkalibacterium sp. SL3. The deduced AmySL3 shares high identities (82-98%) with putative ${\alpha}$-amylases from the genus Alkalibacterium, but has low identities (<53%) with functionally characterized counterparts. amySL3 was successfully expressed in Escherichia coli, and the recombinant enzyme (rAmySL3) was purified to electrophoretic homogeneity. The optimal temperature and pH of the activity of the purified rAmySL3 were determined to be $45^{\circ}C$ and pH 7.5, respectively. rAmySL3 was found to be extremely halophilic, showing maximal enzyme activity at a nearly saturated concentration of NaCl. Its thermostability was greatly enhanced in the presence of 4 M NaCl, and it was highly stable in 5 M NaCl. Moreover, the enzyme did not require calcium ions for activity, and was strongly resistant to a range of surfactants and hydrophobic organic solvents. The major hydrolysis products of rAmySL3 from soluble starch were maltobiose and maltotriose. The high ratio of acidic amino acids and highly negative electrostatic potential surface might account for the halophilic nature of AmySL3. The extremely halophilic, calcium-independent, and surfactant-resistant properties make AmySL3 a promising candidate enzyme for both basic research and industrial applications.

Keywords

References

  1. Guzman-Maldonado H, Paredes-Lopez O. 1995. Amylolytic enzymes and products derived from starch: a review. Crit. Rev. Food Sci. Nutr. 35: 373-403. https://doi.org/10.1080/10408399509527706
  2. van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2
  3. MacGregor EA. 1988. Alpha-amylase structure and activity. J. Protein Chem. 7: 399-415. https://doi.org/10.1007/BF01024888
  4. Janecek S, Svensson B, MacGregor EA. 2014. Alpha-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol. Life Sci. 71: 1149-1170. https://doi.org/10.1007/s00018-013-1388-z
  5. Mikawlrawng K. 2016. Aspergillus in biomedical research, pp. 229-242. In Gupta VK (ed.), New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, Amsterdam.
  6. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31 (Pt 2): 135-152. https://doi.org/10.1042/BA19990073
  7. de Souza PM, de Oliveira Magalhaes P. 2010. Application of microbial alpha-amylase in industry - A review. Braz. J. Microbiol. 41: 850-861. https://doi.org/10.1590/S1517-83822010000400004
  8. Zhang Q, Han Y, Xiao H. 2017. Microbial alpha-amylase: A biomolecular overview. Process Biochem. 53: 88-101. https://doi.org/10.1016/j.procbio.2016.11.012
  9. Kambourova M. 2017. Recent advances in extremophilic alpha-amylases, pp. 99-113. In Sani RK, Krishnaraj RN (eds.), Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy, Springer International Publishing, Cham.
  10. van den Burg B. 2003. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6: 213-218. https://doi.org/10.1016/S1369-5274(03)00060-2
  11. Cipolla A, Delbrassine F, Da Lage JL, Feller G. 2012. Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 94: 1943-1950. https://doi.org/10.1016/j.biochi.2012.05.013
  12. D'Amico S, Marx JC, Gerday C, Feller G. 2003. Activitystability relationships in extremophilic enzymes. J. Biol. Chem. 278: 7891-7896. https://doi.org/10.1074/jbc.M212508200
  13. Kumar S, Grewal J, Sadaf A, Hemamalini R, Khare SK. 2016 Halophiles as a source of polyextremophilic alpha-amylase for industrial applications. AIMS Microbiol. 2: 1-26 https://doi.org/10.3934/microbiol.2016.1.1
  14. Wang G, Wang Q, Lin X, Ng TB, Yan R, Lin J, et al. 2016. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake. Sci. Rep. 6: 19494. https://doi.org/10.1038/srep19494
  15. Wang G, Wu J, Yan R, Lin J, Ye X. 2016. A novel multidomain high molecular, salt-stable alkaline xylanase from Alkalibacterium sp. SL3. Front. Microbiol. 7: 2120.
  16. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12: 7-8.
  17. Suvd D, Fujimoto Z, Takase K, Matsumura M, Mizuno H. 2001. Crystal structure of Bacillus stearothermophilus alphaamylase:possible factors determining the thermostability. J. Biochem. 129: 461-468. https://doi.org/10.1093/oxfordjournals.jbchem.a002878
  18. Wu S, Zhang Y. 2008. MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72: 547-556. https://doi.org/10.1002/prot.21945
  19. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  20. Alikhajeh J, Khajeh K, Ranjbar B, Naderi-Manesh H, Lin YH, Liu E, et al. 2010. Structure of Bacillus amyloliquefaciens alpha-amylase at high resolution: implications for thermal stability. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66: 121-129. https://doi.org/10.1107/S1744309109051938
  21. Yamaguchi R, Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M. 2011. Salt-dependent thermo-reversible alphaamylase:cloning and characterization of halophilic alphaamylase from moderately halophilic bacterium, Kocuria varians. Appl. Microbiol. Biotechnol. 89: 673-684. https://doi.org/10.1007/s00253-010-2882-y
  22. Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS. 2013. Microbiology of Lonar Lake and other soda lakes. ISME J. 7: 468-476. https://doi.org/10.1038/ismej.2012.137
  23. Ji S, Jian-ting C, Yan-hong W, Matsumoto R, Qing-yi S. 2001. Paleoclimatic changes in Dabusu Lake. Chin. J. Oceanol. Limnol. 19: 91-96. https://doi.org/10.1007/BF02842795
  24. Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R. 2005. Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9: 85-89. https://doi.org/10.1007/s00792-004-0423-2
  25. Hutcheon GW, Vasisht N, Bolhuis A. 2005. Characterisation of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9: 487-495. https://doi.org/10.1007/s00792-005-0471-2
  26. Moshfegh M, Shahverdi AR, Zarrini G, Faramarzi MA. 2013. Biochemical characterization of an extracellular polyextremophilic alpha-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 17: 677-687. https://doi.org/10.1007/s00792-013-0551-7
  27. Qin Y, Huang Z, Liu Z. 2014. A novel cold-active and salttolerant alpha-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18: 271-281. https://doi.org/10.1007/s00792-013-0614-9
  28. Srimathi S, Jayaraman G, Feller G, Danielsson B, Narayanan PR. 2007. Intrinsic halotolerance of the psychrophilic alphaamylase from Pseudoalteromonas haloplanktis. Extremophiles 11: 505-515. https://doi.org/10.1007/s00792-007-0062-5
  29. Wang X, Kan G, Ren X, Yu G, Shi C, Xie Q, et al. 2018. Molecular cloning and characterization of a novel alphaamylase from Antarctic sea ice bacterium Pseudoalteromonas sp. M175 and its primary application in detergent. Biomed. Res. Int. 2018: 3258383.
  30. Feller G. 2013. Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013: 512840. https://doi.org/10.1155/2013/512840
  31. Li Z, Wu J, Zhang B, Wang F, Ye X, Huang Y, et al. 2015. AmyM, a novel maltohexaose-forming alpha-amylase from Corallococcus sp. strain EGB. Appl. Environ. Microbiol. 81:1977-1987. https://doi.org/10.1128/AEM.03934-14
  32. Karan R, Capes MD, Dassarma S. 2012. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 8: 4. https://doi.org/10.1186/2046-9063-8-4
  33. Santorelli M, Maurelli L, Pocsfalvi G, Fiume I, Squillaci G, La Cara F, et al. 2016. Isolation and characterisation of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica. Int. J. Biol. Macromol. 92: 174-184. https://doi.org/10.1016/j.ijbiomac.2016.07.001
  34. Kiran KK, Chandra TS. 2008. Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl. Microbiol. Biotechnol. 77: 1023-1031. https://doi.org/10.1007/s00253-007-1250-z
  35. Shafiei M, Ziaee A-A, Amoozegar MA. 2010. Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic ${\alpha}$-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem. 45: 694-699. https://doi.org/10.1016/j.procbio.2010.01.003
  36. Shafiei M, Ziaee AA, Amoozegar MA. 2011. Purification and characterization of an organic-solvent-tolerant halophilic alpha-amylase from the moderately halophilic Nesterenkonia sp. strain F. J. Ind. Microbiol. Biotechnol. 38: 275-281. https://doi.org/10.1007/s10295-010-0770-1
  37. Sinha R, Khare SK. 2014. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front. Microbiol. 5: 165. https://doi.org/10.3389/fmicb.2014.00165
  38. Kobayashi T, Kanai H, Aono R, Horikoshi K, Kudo T. 1994. Cloning, expression, and nucleotide sequence of the alphaamylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J. Bacteriol. 176: 5131-5134. https://doi.org/10.1128/jb.176.16.5131-5134.1994
  39. Onodera M, Yatsunami R, Tsukimura W, Fukui T, Nakasone K, Takashina T, et al. 2013. Gene analysis, expression, and characterization of an intracellular alphaamylase from the extremely halophilic archaeon Haloarcula japonica. Biosci. Biotechnol. Biochem. 77: 281-288. https://doi.org/10.1271/bbb.120693
  40. Wei Y, Wang X, Liang J, Li X, Du L, Huang R. 2013. Identification of a halophilic alpha-amylase gene from Escherichia coli JM109 and characterization of the recombinant enzyme. Biotechnol. Lett. 35: 1061-1065. https://doi.org/10.1007/s10529-013-1175-9
  41. Coronado MJ, Vargas C, Mellado E, Tegos G, Drainas C, Nieto JJ, et al. 2000. The alpha-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146 (Pt 4): 861-868. https://doi.org/10.1099/00221287-146-4-861
  42. Mijts BN, Patel BK. 2002. Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology 148: 2343-2349. https://doi.org/10.1099/00221287-148-8-2343
  43. Feller G, Lonhienne T, Deroanne C, Libioulle C, van Beeumen J, Gerday C. 1992. Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J. Biol. Chem. 267: 5217-5221. https://doi.org/10.1016/S0021-9258(18)42754-8