Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00052

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes  

Kim, Hyung Gi (Department of Advanced Materials Engineering, Kyonggi University)
Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.4, 2021 , pp. 377-386 More about this Journal
Abstract
The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.
Keywords
Cathode; Lithium Battery; Doping; Coating; Capacity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Fu, Y.-P. Deng, C.-H. Shen, G.-L. Xu, X.-X. Peng, Q. Wang, Y.-F. Xu, J.-C. Fang, L. Huang, and S.-G. Sun, Electrochem. commun., 2014, 44, 54-58.   DOI
2 D. Luo, G. Li, X. Guan, C. Yu, J. Zheng, X. Zhang, and L. Li, J. Mater. Chem. A, 2013, 1(4), 1220-1227.   DOI
3 H. Lee, S. B. Lim, J. Y. Kim, M. Jeong, Y. J. Park, and W. S. Yoon, ACS Appl. Mater. Interfaces, 2018, 10(13), 10804-10818.   DOI
4 A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, and P. G. Bruce, J. Am. Chem. Soc., 2006, 128(26), 8694-8698.   DOI
5 H. Koga, L. Croguennec, M. Menetrier, P. Mannessiez, F. Weill, and C. Delmas, J. Power Sources, 2013, 236, 250-258.   DOI
6 J. S. Park and Y. J. Park, J. Electrochem. Sci. Technol., 2017, 8(2), 101-106.   DOI
7 Z. Zheng, X. D. Guo, Y. J. Zhong, W. B. Hua, C. H. Shen, S. L. Chou, and X. S. Yang, Electrochim. Acta, 2016, 188, 336-343.   DOI
8 S. Y. Lee and Y. J. Park, ACS Omega, 2020, 5(7), 3579-3587.   DOI
9 B. G. Lee and Y. J. Park, Sci. Rep., 2020, 10(1), 1-11.   DOI
10 F. Xin, H. Zhou, X. Chen, M. Zuba, N. Chernova, G. Zhou, and M. S. Whittingham, ACS Appl. Mater. Interfaces, 2019, 11(38), 34889-34894.   DOI
11 Y. K. Sun, M. J. Lee, C. S. Yoon, J. Hassoun, K. Amine, and B. Scrosati, Adv. Mater., 2012, 24(9), 1192-1196.   DOI
12 H. Kim, D. Byun, W. Chang, H. G. Jung, and W. Choi, Chem. A, 2017, 5(47), 25077-25089.
13 J. H. Ryu, B. G. Park, S. B. Kim, and Y. J. Park, J. Appl. Electrochem., 2009, 39(7), 1059-1066.   DOI
14 H. Koga, L. Croguennec, M. Menetrier, P. Mannessiez, F. Weill, C. Delmas, and S. Belin, J. Phys. Chem. C., 2014, 118(11), 5700-5709.   DOI
15 J. W. Lee and Y. J. Park, J. Electrochem. Sci. Technol., 2018, 9(3), 176-183.   DOI
16 A. Rougier, P. Gravereau, and C. Delmas, J. Electrochem. Soc., 1996, 143(4), 1168-1175.   DOI
17 C. Fu, G. Li, D. Luo, J. Zheng, and L. Li, J. Mater. Chem. A., 2014, 2(5), 1471-1483.   DOI
18 G. T. K. Fey, P. Muralidharan, C. Z. Lu, and Y. Da Cho, Solid State Ion., 2005, 176(37-28), 2759-2767.   DOI
19 H. Yu and H. Zhou, J. Phys. Chem. Lett., 2013, 4(8), 1268-1280.   DOI
20 H. W. Kwak and Y. J. Park, Sci. Rep., 2019, 9(1), 1-9.   DOI
21 D. Mohanty, A. S. Sefat, S. Kalnaus, J. Li, R. A. Meisner, E. A. Payzant, D. P. Abraham, D. L. Wood, and C. Daniel, J. Mater. Chem. A, 2013, 1(20), 6249-6261.   DOI
22 B. Song, H. Liu, Z. Liu, P. Xiao, M. O. Lai, and L. Lu, Sci. Rep., 2013, 3(1), 1-12.
23 S. J. Shi, J. P. Tu, Y. Y. Tang, Y. X. Yu, Y. Q. Zhang, X. L. Wang, and C. D. Gu, J. Power Sources, 2013, 228, 14-23.   DOI
24 M. Okubo and A. Yamada, ACS Appl. Mater. Interfaces., 2017, 9(42), 36463-36472.   DOI
25 M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, and S. A. Hackney, J. Mater. Chem., 2007, 17(30), 3112-3125.   DOI
26 K. A. Jarvis, Z. Deng, L. F. Allard, A. Manthiram, and P. J. Ferreira, Chem. Mater., 2011, 23(16), 3614-3621.   DOI
27 M. Gu, A. Genc, I. Belharouak, D. Wang, K. Amine, S. Thevuthasan, D. R. Baer, J.-G. Zhang, N. D. Browning, J. Liu, and C. Wang, Chem. Mater., 2013, 25(11), 2319-2326.   DOI
28 D. Y. W. Yu and K. Yanagida, J. Electrochem. Soc., 2011, 158(9), A1015.   DOI
29 J. Reed, G. Ceder, and A. Van Der Ven, Electrochem. Solid-State Lett., 2001, 4(6), A78.   DOI
30 J.-H. Park, J. Lim, J. Yoon, K.-S. Park, J. Gim, J. Song, H. Park, D. Im, M. Park, D. Ahn, Y. Paik, and J. Kim, Dalt. Trans., 2012, 41(10), 3053-3059.   DOI
31 E. S. Lee and A. Manthiram, J. Mater. Chem. A, 2014, 2(11), 3932-3939.   DOI
32 W. He, D. Yuan, J. Qian, X. Ai, H. Yang, and Y. Cao, J. Mater. Chem. A, 2013, 1(37), 11397-11403.   DOI
33 H. J. Lee and Y. J. Park, J. Power Sources., 2013, 244, 222-233.   DOI
34 B. Xu, C. R. Fell, M. Chi, and Y. S. Meng, Energy Environ. Sci., 2011, 4(6), 2223-2233.   DOI
35 M. N. Ates, Q. Jia, A. Shah, A. Busnaina, S. Mukerjee, and K. M. Abraham, J. Electrochem. Soc., 2014, 161(3), A290.   DOI
36 Q. Li, G. Li, C. Fu, D. Luo, J. Fan, and L. Li, ACS Appl. Mater. Interfaces, 2014, 6(13), 10330-10341.   DOI
37 X. Wang, Z. Hu, A. Adeosun, B. Liu, R. Ruan, S. Li, and H. Tan, J. Energy Inst., 2018, 91(6), 835-844.   DOI
38 Y. Seok Jung, A. S. Cavanagh, Y. Yan, S. M. George, and A. Manthiram, J. Electrochem. Soc., 2011, 158(12), A1298-.   DOI
39 H. W. Kwak and Y. J. Park, Thin Solid Films., 2018, 660, 625-630.   DOI
40 C. B. Lim and Y. J. Park, Sci. Rep., 2020, 10(1), 1-12.   DOI
41 K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. pickup, Y. S. Liu, K. Edstrom, J. Guo, A. V. Chadwick, L. C. Duda, and P. G. Bruce, Nat. Chem., 2016, 8(7), 684-691.   DOI