Browse > Article
http://dx.doi.org/10.4014/jmb.1901.01038

A New Extremely Halophilic, Calcium-Independent and Surfactant-Resistant Alpha-Amylase from Alkalibacterium sp. SL3  

Wang, Guozeng (College of Biological Science and Engineering, Fuzhou University)
Luo, Meng (College of Biological Science and Engineering, Fuzhou University)
Lin, Juan (College of Biological Science and Engineering, Fuzhou University)
Lin, Yun (College of Biological Science and Engineering, Fuzhou University)
Yan, Renxiang (College of Biological Science and Engineering, Fuzhou University)
Streit, Wolfgang R. (Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg)
Ye, Xiuyun (College of Biological Science and Engineering, Fuzhou University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.5, 2019 , pp. 765-775 More about this Journal
Abstract
A new ${\alpha}$-amylase-encoding gene (amySL3) of glycoside hydrolase (GH) family 13 was identified in soda lake isolate Alkalibacterium sp. SL3. The deduced AmySL3 shares high identities (82-98%) with putative ${\alpha}$-amylases from the genus Alkalibacterium, but has low identities (<53%) with functionally characterized counterparts. amySL3 was successfully expressed in Escherichia coli, and the recombinant enzyme (rAmySL3) was purified to electrophoretic homogeneity. The optimal temperature and pH of the activity of the purified rAmySL3 were determined to be $45^{\circ}C$ and pH 7.5, respectively. rAmySL3 was found to be extremely halophilic, showing maximal enzyme activity at a nearly saturated concentration of NaCl. Its thermostability was greatly enhanced in the presence of 4 M NaCl, and it was highly stable in 5 M NaCl. Moreover, the enzyme did not require calcium ions for activity, and was strongly resistant to a range of surfactants and hydrophobic organic solvents. The major hydrolysis products of rAmySL3 from soluble starch were maltobiose and maltotriose. The high ratio of acidic amino acids and highly negative electrostatic potential surface might account for the halophilic nature of AmySL3. The extremely halophilic, calcium-independent, and surfactant-resistant properties make AmySL3 a promising candidate enzyme for both basic research and industrial applications.
Keywords
${\alpha}$-amylases; glycoside hydrolase family 13; halophilic; surfactant-resistant; calcium-independent; Alkalibacterium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Feller G, Lonhienne T, Deroanne C, Libioulle C, van Beeumen J, Gerday C. 1992. Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J. Biol. Chem. 267: 5217-5221.   DOI
2 Suvd D, Fujimoto Z, Takase K, Matsumura M, Mizuno H. 2001. Crystal structure of Bacillus stearothermophilus alphaamylase:possible factors determining the thermostability. J. Biochem. 129: 461-468.   DOI
3 Shafiei M, Ziaee A-A, Amoozegar MA. 2010. Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic ${\alpha}$-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem. 45: 694-699.   DOI
4 Shafiei M, Ziaee AA, Amoozegar MA. 2011. Purification and characterization of an organic-solvent-tolerant halophilic alpha-amylase from the moderately halophilic Nesterenkonia sp. strain F. J. Ind. Microbiol. Biotechnol. 38: 275-281.   DOI
5 Sinha R, Khare SK. 2014. Protective role of salt in catalysis and maintaining structure of halophilic proteins against denaturation. Front. Microbiol. 5: 165.   DOI
6 Kobayashi T, Kanai H, Aono R, Horikoshi K, Kudo T. 1994. Cloning, expression, and nucleotide sequence of the alphaamylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36. J. Bacteriol. 176: 5131-5134.   DOI
7 Onodera M, Yatsunami R, Tsukimura W, Fukui T, Nakasone K, Takashina T, et al. 2013. Gene analysis, expression, and characterization of an intracellular alphaamylase from the extremely halophilic archaeon Haloarcula japonica. Biosci. Biotechnol. Biochem. 77: 281-288.   DOI
8 Alikhajeh J, Khajeh K, Ranjbar B, Naderi-Manesh H, Lin YH, Liu E, et al. 2010. Structure of Bacillus amyloliquefaciens alpha-amylase at high resolution: implications for thermal stability. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66: 121-129.   DOI
9 Wu S, Zhang Y. 2008. MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72: 547-556.   DOI
10 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
11 Yamaguchi R, Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M. 2011. Salt-dependent thermo-reversible alphaamylase:cloning and characterization of halophilic alphaamylase from moderately halophilic bacterium, Kocuria varians. Appl. Microbiol. Biotechnol. 89: 673-684.   DOI
12 Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS. 2013. Microbiology of Lonar Lake and other soda lakes. ISME J. 7: 468-476.   DOI
13 Ji S, Jian-ting C, Yan-hong W, Matsumoto R, Qing-yi S. 2001. Paleoclimatic changes in Dabusu Lake. Chin. J. Oceanol. Limnol. 19: 91-96.   DOI
14 Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R. 2005. Organic solvent tolerance of halophilic alpha-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9: 85-89.   DOI
15 Hutcheon GW, Vasisht N, Bolhuis A. 2005. Characterisation of a highly stable alpha-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9: 487-495.   DOI
16 van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 94: 137-155.   DOI
17 Wei Y, Wang X, Liang J, Li X, Du L, Huang R. 2013. Identification of a halophilic alpha-amylase gene from Escherichia coli JM109 and characterization of the recombinant enzyme. Biotechnol. Lett. 35: 1061-1065.   DOI
18 Coronado MJ, Vargas C, Mellado E, Tegos G, Drainas C, Nieto JJ, et al. 2000. The alpha-amylase gene amyH of the moderate halophile Halomonas meridiana: cloning and molecular characterization. Microbiology 146 (Pt 4): 861-868.   DOI
19 Mijts BN, Patel BK. 2002. Cloning, sequencing and expression of an alpha-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology 148: 2343-2349.   DOI
20 Guzman-Maldonado H, Paredes-Lopez O. 1995. Amylolytic enzymes and products derived from starch: a review. Crit. Rev. Food Sci. Nutr. 35: 373-403.   DOI
21 MacGregor EA. 1988. Alpha-amylase structure and activity. J. Protein Chem. 7: 399-415.   DOI
22 Janecek S, Svensson B, MacGregor EA. 2014. Alpha-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol. Life Sci. 71: 1149-1170.   DOI
23 Mikawlrawng K. 2016. Aspergillus in biomedical research, pp. 229-242. In Gupta VK (ed.), New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, Amsterdam.
24 Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31 (Pt 2): 135-152.   DOI
25 Wang X, Kan G, Ren X, Yu G, Shi C, Xie Q, et al. 2018. Molecular cloning and characterization of a novel alphaamylase from Antarctic sea ice bacterium Pseudoalteromonas sp. M175 and its primary application in detergent. Biomed. Res. Int. 2018: 3258383.
26 Moshfegh M, Shahverdi AR, Zarrini G, Faramarzi MA. 2013. Biochemical characterization of an extracellular polyextremophilic alpha-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 17: 677-687.   DOI
27 Qin Y, Huang Z, Liu Z. 2014. A novel cold-active and salttolerant alpha-amylase from marine bacterium Zunongwangia profunda: molecular cloning, heterologous expression and biochemical characterization. Extremophiles 18: 271-281.   DOI
28 Srimathi S, Jayaraman G, Feller G, Danielsson B, Narayanan PR. 2007. Intrinsic halotolerance of the psychrophilic alphaamylase from Pseudoalteromonas haloplanktis. Extremophiles 11: 505-515.   DOI
29 Feller G. 2013. Psychrophilic enzymes: from folding to function and biotechnology. Scientifica 2013: 512840.   DOI
30 Li Z, Wu J, Zhang B, Wang F, Ye X, Huang Y, et al. 2015. AmyM, a novel maltohexaose-forming alpha-amylase from Corallococcus sp. strain EGB. Appl. Environ. Microbiol. 81:1977-1987.   DOI
31 Karan R, Capes MD, Dassarma S. 2012. Function and biotechnology of extremophilic enzymes in low water activity. Aquat. Biosyst. 8: 4.   DOI
32 Santorelli M, Maurelli L, Pocsfalvi G, Fiume I, Squillaci G, La Cara F, et al. 2016. Isolation and characterisation of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica. Int. J. Biol. Macromol. 92: 174-184.   DOI
33 Kumar S, Grewal J, Sadaf A, Hemamalini R, Khare SK. 2016 Halophiles as a source of polyextremophilic alpha-amylase for industrial applications. AIMS Microbiol. 2: 1-26   DOI
34 Kiran KK, Chandra TS. 2008. Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl. Microbiol. Biotechnol. 77: 1023-1031.   DOI
35 de Souza PM, de Oliveira Magalhaes P. 2010. Application of microbial alpha-amylase in industry - A review. Braz. J. Microbiol. 41: 850-861.   DOI
36 Zhang Q, Han Y, Xiao H. 2017. Microbial alpha-amylase: A biomolecular overview. Process Biochem. 53: 88-101.   DOI
37 Kambourova M. 2017. Recent advances in extremophilic alpha-amylases, pp. 99-113. In Sani RK, Krishnaraj RN (eds.), Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy, Springer International Publishing, Cham.
38 van den Burg B. 2003. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6: 213-218.   DOI
39 Cipolla A, Delbrassine F, Da Lage JL, Feller G. 2012. Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 94: 1943-1950.   DOI
40 D'Amico S, Marx JC, Gerday C, Feller G. 2003. Activitystability relationships in extremophilic enzymes. J. Biol. Chem. 278: 7891-7896.   DOI
41 Wang G, Wang Q, Lin X, Ng TB, Yan R, Lin J, et al. 2016. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake. Sci. Rep. 6: 19494.   DOI
42 Wang G, Wu J, Yan R, Lin J, Ye X. 2016. A novel multidomain high molecular, salt-stable alkaline xylanase from Alkalibacterium sp. SL3. Front. Microbiol. 7: 2120.
43 Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2015. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12: 7-8.