• Title/Summary/Keyword: main reinforcement

Search Result 617, Processing Time 0.026 seconds

Study on the Structural Reinforcements for the Transverse Vibration of Ship's Main Engine (선박 주기관 횡진동 구조보강 검토)

  • Im, Hong-Il;Shin, Sang-Hoon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.55-59
    • /
    • 2013
  • Transverse vibrations of ship's aft end and deckhouse among the various modes of hull structures are induced mainly by transverse exciting forces and moments of main engine such as ${\times}$ and h-moment. Avoidance of resonance should be made in a intial design stage in case there is a prediction for resonance between main engine and transverse modes of deckhouse. This study shows a case of change in type of main engine from 12 cylinders to 10 without modification of hull structures in engine room requested by a shipowner of 8,600 TEU class container carrier and proposes a guide to the effective ways of structural arrangement for avoiding resonance between transverse exciting force and surrounding structures of main engine in engine room through case studies.

  • PDF

A Characteristic Study on Shear Strength of Reinforced Concrete Beams according to Shear Reinforcement Ratio and Beam Section Size (전단철근비와 보의 단면크기에 따른 철근콘크리트 보의 전단강도 특성 연구)

  • Noh, Hyung-Jin;Yu, In-Geun;Lee, Ho-Kyung;Baek, Seung-Min;Kim, Woo-Suk;Kwak, Yoon-Keun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.111-119
    • /
    • 2019
  • The purpose of this study is to investigate the shear strength of reinforced concrete beam according to beam section size and shear reinforcement ratio. A total of nine specimens were tested and designed concrete compressive strength is 24 MPa. The main variables are shear reinforcement ratio and beam section size fixed with shear span to depth ratio (a/d = 2.5), the tensile reinforcement ratio (${\rho}=0.013$) and width to depth ratio (h/b = 1.5). The test specimens were divided into three series of S1 ($225{\times}338mm$), S2 ($270{\times}405mm$) and S3 ($315{\times}473mm$), respectively. The experimental results show that all specimens represent diagonal tensile failure. For $S^*-1$ specimens (d/s=0), the shear strength decreased by 33% and 46% with increasing the beam effective depth, 26% and 33% for $S^*-2$ specimens (d/s=1.5) and 16% and 20% for $S^*-3$ specimens (d/s=2.0) respectively. As the shear reinforcement ratio increases, the decrease range in shear strength decreases. In other words, this means that as the shear reinforcement ratio increases, the size effect of concrete decreases. In the S1 series, the shear strength increased by 39% and 41% as the shear reinforcement ratio increased, 54% and 76% in the S2 series and 66% and 100% in the S3 series, respectively. As the effective depth of beam increases, the increase range of shear strength increases. This means that the effect of shear reinforcement increases as the beam effective depth increases. As a result of comparing experimental values with theoretical values by standard equation and proposed equation, the ratio by Zsutty and Bazant's equation is 1.30 ~ 1.36 and the ratio by KBC1 and KBC2 is 1.55~.163, respectively. Therefore, Zsutty and Bazant's proposed equation is more likely to reflect the experimental data. The current standard for shear reinforcement ratio (i.e., $S_{max}=d/2$) is expected to be somewhat relaxed because the ratio of experimental values to theoretical values was found to be 1.01 ~ 1.44 for most specimens.

The Volumetric Ratio of Transverse Reinforcement of R/C Columns Considering Effective Lateral Confining Reduction Factor (유효횡구속압력 감소계수를 사용한 RC 기둥의 횡보강근량 평가)

  • Kim, Jong-Keun;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.311-318
    • /
    • 2009
  • An experimental investigation was conducted to examine the hysteretic behaviors of ultra-high strength concrete tied columns. The purpose of this study is to propose the volumetric ratio of transverse reinforcement for ultra-high strength concrete tied columns with 100 MPa compressive strength. Nineteen 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the main variables of axial load ratio, configurations and volumetric ratios of transverse reinforcement. The results show that the deformability of columns are affected by the configurations and volumetric ratios of transverse reinforcement. Especially, it has been found that the behavior of columns are affected by axial load ratio rather than the amounts and the configurations of transverse reinforcement. To improve the ductility behavior of RC column using ultra high strength concrete in a seismic region, We suggested the amount of transverse reinforcement for all data that satisfy the required displacement ductility ratio over 4. It is means that the lateral confining reduction factor (${\lambda}^c$) considering the effective legs, configuration and spacing of transverse reinforcement and axial load ratio was reflected for the volumetric ratio of transverse reinforcement.

A Study on the Use of a Continuous Fiber Soil Reinforcement System to Revegetate a Cut Slope (비탈면의 생태복원을 위한 연속섬유보강토의 적용성에 관한 연구)

  • Koh, Jeung-Hyun;Hur, Young-Jin;Lee, Yong-Gu;Kim, Nam-Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.73-83
    • /
    • 2010
  • A technology using continuous fiber soil reinforcement system for the creation of ecological restoration in a damaged area has been developed and introduced. The continuous fiber soil reinforcement system (Geofiber system) is an environmentally friendly slope protection technique that continuous fiber soil reinforced layers are constructed with green plantation on cut slope. The characteristics of this system in terms of the strength and hydraulic performance, and the vegetation were investigated in this study. The main objectives of this comparative study was to quantify the potential contribution of geofiber system for the revegetation on the cut slope in a damaged area. A Geofiber system was constructed to reinforce the lower layer of slopes and revegetation methods including wood chips were carried out on the upper layer by machineries. The results of monitoring during 3 years on cut slopes were as follows : 1) All the quadrat existed in the proper range for vegetation. 2) Species richness was 4.4 (site-1) and 18.5 (site-2) respectively. 3) The averaged coverage rates of quadrats was 90%. It is remarkable that the continuous fiber soil reinforcement system would be capable of applying to a damaged area and also would serve maintaining a healthier environment for floras. However, it behooves to continue monitoring on succession of vegetation for ecological restoration.

Strength Degradation and Failure of Circular RC Bridge Columns with Longitudinal Steel Connection under Cyclic Lateral Load (반복횡하중을 받는 철근콘크리트 원형 교각의 축방향철근 연결상세에 따른 강도저감 및 파괴거동)

  • Lee Jae-Hoon;Jung Chul-Ho;Ko Seong-Hyun;Son Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.111-124
    • /
    • 2004
  • This research is a part of a research program to verify the seismic performance of circular reinforced concrete bridge columns with respect to longitudinal steel connection details under cyclic lateral load. A total of 21 column specimens were constructed and tested. Main variables in this test program were longitudinal steel connection details(continuous, lap-spliced, and mechanically connected), confinement steel ratio, and axial force ratio, etc. The test results of the columns with different longitudinal steel connection details showed different failure mode, strength degradation, and seismic performance. From the quasi-static test, it was found that the columns with all longitudinal reinforcement lap-spliced showed significantly reduced ductility. However, seismic performance of the columns with half of longitudinal reinforcement lap-spliced showed limited ductility but much more ductile behaviour than the columns with all longitudinal reinforcement lap-spliced. It was also found that the seismic performance, failure mode and strength degradation of columns with mechanical connected longitudinal reinforcement were similar to those of columns with continuous longitudinal reinforcement.

Analysis of Damage Levels with Bond Performance between Reinforcement and Recycled Coarse Aggregate Concrete (순환굵은골재 콘크리트와 이형철근의 부착거동시 손상단계 분석)

  • Lee, Min-Jung;Yun, Hyun-Do;JAng, Yong-Heon;Choi, Ki-Sun;You, Young-Chan;Lee, Do-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.863-866
    • /
    • 2008
  • One of the most important requirements for reinforced concrete constructions is the bond behavior between concrete and reinforcement. In this study, the positions (i.e., vertical, horizontal) and the locations (i.e., 225mm and 75mm) of reinforcement were considered as a main test parameter. The ready mixed recycled aggregate concrete concrete with specified strength of 21MPa was prepared with different replacement ratio(i.e 0%, 100%) of recycled coarse aggregate. From the test results, it was bond that under the same mix proportion (i.e., the mix proportions are the same, except for deformed bars position), the bond strength between the recycled coarse aggregate concrete and the reinforcement has obvious relation with reinforcement position. Also, the specimens of top position showed a lower bond stress than that provided in CEB-FIP Code.

  • PDF

Experimental Study on Connectability of Half-Depth Precast Deck Panels with Loop Joint (루프이음을 갖는 반단면 프리캐스트 바닥판 이음부 성능에 대한 실험적 연구)

  • Chung, Chul Hun;Sung, Yeol Eun;Hyun, Byung Hak;Park, Se Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.581-590
    • /
    • 2008
  • The panels are used as a composite part of the completed deck. They replace the main bottom transverse deck reinforcement and also serve as a form surface for the cast-in-place concrete upper layer that contains the top of deck reinforcement. In this paper, three types of the detail for joints was selected and their structural performance in terms of strength and crack contral was investigated through static tests on composite beams. Form the results, the validity of loop joints for continuity of half-depth precast deck was observed and especially an overlapping length of loop joint and transverse reinforcement were checked. The results suggest that increasing the loop overlapping length increases the flexural strength of half-depth precast deck with loop joints. In terms of crack contral, the loop joint with transverse reinforcement showed better performance.

Shear strength of reinforced concrete dapped-end beams

  • Lin, Ing-Jaung;Hwang, Shyh-Jiann;Lu, Wen-Yao;Tsai, Jiunn-Tyng
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.275-294
    • /
    • 2003
  • In this study, 24 high-strength concrete dapped-end beams were tested to study the effects of the amount of main dapped-end reinforcement, the nominal shear span-to-depth ratio, and the concrete strength on the shear strength of dapped-end beams. Test results indicate that the shear strength of dapped ends increases with the increase in the amount of main dapped-end reinforcement and the concrete strength. The shear strength of dapped-end beam increases with the decrease of nominal shear span-to-depth ratio. A simplified method for determining the shear strength of reinforced concrete dapped ends is also proposed in this paper. The shear strengths predicted by the proposed method and the approach of PCI Design Handbook are compared with test results. The comparison shows that the proposed method can more accurately predict the shear strength of reinforced concrete dapped-end beams than the approach of PCI Design Handbook.

Nonlinear 3-D behavior of shear-wall dominant RC building structures

  • Balkaya, Can;Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The behavior of shear-wall dominant, low-rise, multistory reinforced concrete building structures is investigated. Because there are no beams or columns and the slab and wall thicknesses are approximately equal, available codes give little information relative to design for gravity and lateral loads. Items which effect the analysis of shear-wall dominant building structures, i.e., material nonlinearity including rotating crack capability, 3-D behavior, slab-wall interaction, floor flexibilities, stress concentrations around openings, the location and the amount of main discrete reinforcement are investigated. For this purpose 2 and 5 story building structures are modelled. To see the importance of 3-D modelling, the same structures are modelled by both 2-D and 3-D models. Loads are applied first the vertical then lateral loads which are static equivalent earthquake loads. The 3-D models of the structures are loaded in both in the longitudinal and transverse directions. A nonlinear isoparametric plate element with arbitrarily places edge nodes is adapted in order to consider the amount and location of the main reinforcement. Finally the importance of 3-D effects including the T-C coupling between walls are indicated.