• 제목/요약/키워드: main production

검색결과 2,950건 처리시간 0.026초

텅스텐의 제련과 리사이클링 현황 (Current Status of Smelting and Recycling Technologies of Tungsten)

  • 손호상
    • 한국분말재료학회지
    • /
    • 제28권4호
    • /
    • pp.342-351
    • /
    • 2021
  • Because of its unique properties, tungsten is a strategic and rare metal used in various industrial applications. However, the world's annual production of tungsten is only 84000 t. Ammonium paratungstate (APT), which is used as the main intermediate in industrial tungsten production, is usually obtained from tungsten concentrates of wolframite and scheelite by hydrometallurgical treatment. Intermediates such as tungsten trioxide, tungsten blue oxide, tungstic acid, and ammonium metatungstate can be derived from APT by thermal decomposition or chemical attack. Tungsten metal powder is produced through the hydrogen reduction of high-purity tungsten oxides, and tungsten carbide powder is produced by the reaction of tungsten powder and carbon black powder at 1300-1700℃ in a hydrogen atmosphere. Tungsten scrap can be divided into hard and soft scrap based on shape (bulk or powder). It can also be divided into new scrap generated during the production of tungsten-bearing goods and old scrap collected at the end of life. Recycling technologies for tungsten can be divided into four main groups: direct, chemical, and semi-direct recycling, and melting metallurgy. In this review, the current status of tungsten smelting and recycling technologies is discussed.

자동차 생산계획 시스템에서 제약만족기법을 이용한 생산 시퀀스 모듈 구현 (Implementation of a Vehicle Production Sequencing Module Using Constraint Satisfaction Technique for Vehicle Production Planning System)

  • 하영훈;우상복;안현식;한형상;박영진
    • 산업공학
    • /
    • 제16권3호
    • /
    • pp.352-361
    • /
    • 2003
  • Vehicle manufacturing plant is a typical mixed-model production system. Generally it consists of three main shops including body shop, painting shop and assembly shop in addition to engine shop. Each shop contains diverse manufacturing processes, all of which are integrated in a form of flow line. Due to the high pressure from the market requesting small-volume large variety production, production planning becomes very critical for the competitiveness of automotive industry. In order to save costs and production time, production planning system is requested to meet some designated requirements for each shop: to balance the work load in body and assembly shops, and to minimize the number of color changes in painting shop. In this context, we developed a sequencing module for a vehicle production planning system using the ILOG Solver Library. It is designed to take into account all the manufacturing constraints at a time with meeting hard constraints in body shop, minimizing the number of soft constraints violated in assembly shop, and minimizing the number of color changes in painting shop.

Analysis of the economic value of the production of lily bulbs in Korea

  • Jang, Hyundong;Kim, Sounghun
    • 농업과학연구
    • /
    • 제43권3호
    • /
    • pp.481-495
    • /
    • 2016
  • Lily, which is one of Korea's main flower exports, is one of the most important agricultural product in the country. Korean lily farmers have difficulty earning more profit from producing lilies, because of the high cost of lily bulbs. Most lily bulbs used in Korea are imported from the Netherlands. Thus, the Korean government has kept trying to supply more and better Korean lily bulbs. However, many experts have questioned the efficiency and economic value of the Korean lily production system. The purpose of this paper is to analyze the economic value of the production of lily bulbs in Korea. Especially, this study evaluates the economic value of the production systems of Korean lily bulbs and compares the results from several cases. The results of the present study presents some useful findings, as follows: first, two Korean production areas (Gangneung and Jeju) show a positive economic value but one Korean production area (Taean) presents problems causing a negative economic value. Second, the Korean production area in Vietnam currently has trouble in the view of economic value but will likely overcome that problem. Third, the production area in the Netherlands shows the best economic value. Thus, Korean lily bulb producers need to benchmark that system.

해상에서의 LNG 생산을 위한 공정 고찰 (Study of Process for Offshore LNG Production)

  • 김승혁;하문근;김병우;;구근회
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.119-123
    • /
    • 2002
  • Liquefied Natural Gas(LNG) continues to attract modern gas industries as well as domestic markets as their main energy source in the recent years. This is mainly because LNG is inherently cleaner and more energy efficiency than other fuels. Offshore LNG production plant is of interest to many oil producing companies all over the world. This article discuss about the production process encountered while developing such a production facility. Typical offshore oil and gas processing required for oil stabilization and other optional units that can be added to the facilities. The production process can broadly be divided into five major units namely, (i) Oil Stabilization unit, (ii) Gas Treatment unit, (iii) Methane Recovery unit, (iv) Distillation unit and (v) LNG Liquefaction unit. The process simulation was carried out for each unit with a given wellhead composition. The topside facilities of offshore LNG production plant will be very similar to the process adopted in offshore processing platform along with the typical onshore LNG production plant. However, the process design problems associated with FPSO motion to be taken care of while developing floating LNG production plant.

  • PDF

감국을 주성분으로 하는 허브차의 투여가 출산 후 쥐의 유즙 생성 및 관련 호르몬 분비에 미치는 영향 (Effects of galactagogue herbal tea containing Chrysanthemum indicum as the main component on milk production in postpartum rats)

  • 최지영;이윤정;최선욱;박은주
    • Journal of Nutrition and Health
    • /
    • 제53권5호
    • /
    • pp.445-451
    • /
    • 2020
  • Purpose: Breastfeeding is the optimal method for feeding a newborn. But insufficient breast milk is the major reason why mothers give up breastfeeding. Herbal galactagogues have been used increasingly to treat postpartum hypogalactia. This study examined the effect of an herbal tea containing Chrysanthemum indicum, as the main ingredient, on milk production in lactating rats. Methods: The herbal tea contained C. indicum (27%), Foeniculum vulgare Mill (21%), Pimpinella anisum (18.2%), Carum carvi (16.1%), Urtica dioica (14.7%), and Gardenia jasminoides (3%). Sixteen lactating Sprague-Dawley (SD) rats were divided randomly into 2 groups, the normal control group (NC; n = 8), and the galactagogue herbal tea group (GHT; n = 8) for 7 days. Lactating rats were administered the decoction of an herbal galactagogue mixture by oral gavage or the same amount of distilled water and milk production was assessed by measuring the pups' weights during the suckling period. The blood concentrations of prolactin, cortisol, oxytocin levels and mammary gland tissues were examined to assess the effects of the galactagogue. Results: Milk production was 9.2% higher in the GHT group given the herbal tea than in the NC group and the difference was statistically significant. The cortisol level in the GHT group was 17.2% higher than the NC group. The herbal tea containing C. indicum increased the size of the alveoli epithelium cells and the mammary lobe. Conclusion: The present study revealed the potential of herbal tea containing C. indicum to enhance milk production in postpartum SD rats.

Gene expression analysis related to ethylene induced female flowers of cucumber (Cucumis sativus L.) at different photoperiod

  • Ikram, Muhammad Maulana Malikul;Esyanti, Rizkita Rachmi;Dwivany, Fenny Martha
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.229-234
    • /
    • 2017
  • Photoperiod is one of the factors affecting productivity of cucumber plant by inducing ethylene hormone production and so triggering flower sex differentiation into female flower. However, only few studies have been perfomed in order to reveal the effect of photoperiod in molecular level in relation to the flower differentiation. Therefore, in this study, Mercy cultivar of cucumber (andromonoecious) was treated with photoperiod of 8, 12, 16 hours of light, while control received no treatment of additional light. Photoperiod of 8 hours was achieved by blocking the sunlight with shade net and 16 hours by giving longer light exposure using white LEDs. Cucumber's flowers were quantified and the apical and lateral shoots were extracted to evaluate the gene profile related to the photoperiod, ethylene production, and female flower differentiation, which were CsACS2, CsETR1, CsCaN, and CsPIF4 using PCR method. Photoperiod of 8 hours affected the production of female flower with average number of 6.7 flowers in main stem and 8.0 flowers in lateral stem, compared to photoperiod of 12 and 16 hours which produced 3.7 and 2.0 flowers in main stem with 7.0 and 11.3 in lateral stem, respectively. In silico studies in this experiment resulted in proposed model of signal transduction that showed the connection between ethylene production and flower differentiation. PCR analysis confirmed the expression of CsACS2, CsETR1, and CsCaN, that was positively correlated with numbers of female flowers in cucumber, but the expression of CsPIF4 that represent photoperiod haven't been confirmed correlated with the ethylene production and flower differentiation.

비파엽 열수 추출물에서 분리한 Caffeoylquinic Acid 3 종의 Nitric Oxide 생성 억제 효과 (Nitric Oxide Production Inhibitory Effects of Three Caffeoylquinic Acids Isolated from Hot Water Extract of Eriobotrya japonica L. Leaves)

  • 김선민;김아영;이경인
    • 한국약용작물학회지
    • /
    • 제28권4호
    • /
    • pp.245-253
    • /
    • 2020
  • Background: Research on hot water extracts of medicinal plants that are easily applicable in the clinical setting is essential. To confirm the anti-inflammatory-related active compounds present in the hot water extract of Eriobotrya japonica leaves, ability to inhibit nitric oxide (NO) production was measured and active compounds isolated from the extract were analyzed. Methods and Results: Sovent fractionation by solvent was performed to identify the active compounds present in the hot water extract, and the ability of the extract and the fractions obtained to inhibit NO production was measured. Subsequently, based on the results of liquid chromatography (LC) profile analysis of the n-butanol fraction that had a relatively high inhibitory ability of NO production, six subfractions were separated around the main peak. Among the separated subfractions spectra from mass spectroscopy (MS) were analyzed and standard comparisons were performed on the compounds of the three main peaks on the chromatogram. NO production inhibitory activity of subfraction 2 identified as neochlorogenic acid was the highest with an IC50 of 18.49 ㎍/㎖ followed by that of subfraction 5 identified as cryptochlorogenic acid with IC50 of 25.82 ㎍/㎖. Conclusions: Our result, it was confirmed that several caffeoylquinic acids, including neochlorogenic acid and cryptochlorogenic acid present in the hot water extract of E. japonica leaves have an important role as compounds exhibiting anti-inflammatory activity.

기온변화에 대한 옥수수와 밀 생산량 취약성 평가 - 미국과 중국을 사례로 - (Vulnerability Assessment of Maize and Wheat Production to Temperature Change - In Case of USA and China -)

  • 송용호;이우균;곽한빈;김문일;양승룡
    • 한국기후변화학회지
    • /
    • 제4권4호
    • /
    • pp.371-384
    • /
    • 2013
  • 최근 기후변화로 인해 잇따라 발생하는 전 지구적 이상기후의 출현은 사회 전반에 걸쳐 직 간접적으로 많은 영향을 미친다. 특히, 자연을 통해 기본 에너지를 얻는 농업은 기상환경에 따라 작물의 생장과 수확이 직접적으로 영향을 받기 때문에, 기후변화와 관련된 사회적 중요 관심사가 되었다. 본 연구에서는 국내 주요 수입곡물중 큰 부분을 차지하고 있는 옥수수와 밀에 대하여 주요 수출국인 미국과 중국을 대상으로 생산량에 많은 영향을 끼치는 온도의 변화 경향을 통해 취약성 평가를 하였다. 주요 곡물 생산국들의 곡물 생산성에 영향을 미치는 재배기간을 문헌 및 기존 연구를 통해 국가별로 파악하여 주요 재배기간으로 정하고, 옥수수와 밀에 대한 생산국별 주요 재배기간에 해당하는 미래 기상은 RCP8.5 기후변화 시나리오를 기반으로 구축하였다. 기온의 변화경향을 나타내는 적응성과 기온의 변화 정도를 나타내는 민감도를 이용하여 중국과 미국 간의 곡물별 생산취약성을 분석한 결과, 과거에 밀은 미국이 생산에 유리하고, 옥수수는 중국이 유리하였지만, 미래에는 두 곡물 모두 미국이 생산에 유리한 것으로 나타났다. 본 연구를 통해 도출된 생산성 취약성 평가 결과는 기후변화로 인한 미래 수입 곡물 가격변동에 대한 대비 자료로 이용될 수 있을 것으로 판단된다.

기후변화에 따른 주요 벼 병해충에 의한 벼 생산의 취약성평가 (Vulnerability Assessment of Rice Production by Main Disease and Pest of Rice Plant to Climate Change)

  • 김명현;방혜선;나영은;김미란;오영주;강기경;조광진
    • 한국환경복원기술학회지
    • /
    • 제16권1호
    • /
    • pp.147-157
    • /
    • 2013
  • Rice is a main crop and rice field is the most important farmland in Korea. This study was conducted to propose the methodology assessing impact and vulnerability on rice production by climate change at the regional and national level in Korea. We evaluated a vulnerability of rice paddy according to the outbreak of a main disease and pest of a rice plant. As results, Jeju-do, Gyeongsangnam-do, and Jeollanam-do were more vulnerable area than others. In contrast, the southern central region including Gyeonggi-do was less vulnerable than others. The vulnerable index was significantly higher in 2050s (0.5589) than in present (0.3500). This result showed that the vulnerable to the disease and pest enlarge in the future. The adaptive capacity highly contributed to the vulnerability assessment index. The daily maximum temperature of June and the daily average temperature from May to August also contributed the climate exposure index. The area of occurring sheath blight, rice leaf blast and striped rice borer was related to the system sensitivity index. The ability of water supply (readjustment area of arable land per paddy field area) and rice production technique (rice yield per hectare) were the highly contributed variables to the adaption capacity index.

Measurement and Analysis of Physical Environmental Load during Handling and Distribution of Domestic Fruits -Focused on Seongju Korean Melon

  • Jongmin Park;Donghyun Kim;Wontae Seo;Hyunmo Jung
    • 한국포장학회지
    • /
    • 제29권2호
    • /
    • pp.129-138
    • /
    • 2023
  • The proportion of agricultural products handled through the Agricultural Products Processing Center (APC) is also steadily increasing every year, and in the case of Seongju Korean melon, a total of 10 APCs of Nonghyup and farming association corporations are in operation, and the distribution ratio is about 60% based on total production. In this study, Seongju Korean melon was selected as a target to analyze the environment load during carrying (production farm ~ APC) in the production area and the transport environment load during distribution of domestic fruits, and to analyze the environmental load for handling at APC. The vertical average vibration intensity (overall Grms of 1~250 Hz) of truck transport measured at three transport routes from Seongju Korean melon producer ~ APC, Seongju ~ Seoul and Seongju ~ Jeju was about three times larger than that in the lateral direction and 4.5 times larger than that in the longitudinal direction, respectively. The frequency of occurrence of high-amplitude events (G) in the vertical direction compared to the measuring time was deeply related to pavement conditions in the order of unpaved farm-roads, concretepaved farm-roads, and asphalt-paved main-roads, but overall Grms for the entire frequency band is believed to have a greater impact on vehicle traveling speed than road conditions. On the other hand, the difference in the size and direction of the vibration intensity measured by the forklift truck's main-body and the attachment (fork carrier) during handling at Seongju Korean melon APC was clear, and the vibration intensity of the forklift truck's main-body was largely affected by the stiffness of the fork and the mast according to the handling weight. Based on the field-data of the transport environment during domestic distribution measured through this study, it is believed that it is possible to develop a lab-based simulation protocol for appropriate packaging design.