Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.4.342

Current Status of Smelting and Recycling Technologies of Tungsten  

Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of Powder Materials / v.28, no.4, 2021 , pp. 342-351 More about this Journal
Abstract
Because of its unique properties, tungsten is a strategic and rare metal used in various industrial applications. However, the world's annual production of tungsten is only 84000 t. Ammonium paratungstate (APT), which is used as the main intermediate in industrial tungsten production, is usually obtained from tungsten concentrates of wolframite and scheelite by hydrometallurgical treatment. Intermediates such as tungsten trioxide, tungsten blue oxide, tungstic acid, and ammonium metatungstate can be derived from APT by thermal decomposition or chemical attack. Tungsten metal powder is produced through the hydrogen reduction of high-purity tungsten oxides, and tungsten carbide powder is produced by the reaction of tungsten powder and carbon black powder at 1300-1700℃ in a hydrogen atmosphere. Tungsten scrap can be divided into hard and soft scrap based on shape (bulk or powder). It can also be divided into new scrap generated during the production of tungsten-bearing goods and old scrap collected at the end of life. Recycling technologies for tungsten can be divided into four main groups: direct, chemical, and semi-direct recycling, and melting metallurgy. In this review, the current status of tungsten smelting and recycling technologies is discussed.
Keywords
Tungsten; Ammonium paratungstate; WC-Co cemented carbide; Scraps; Recycling;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Kucher, S. Luidold, C. Czettl and C. Storf: Int. J. Refract. Met. Hard Mater., 86 (2020) 105131, 1.   DOI
2 A. O. Amadou, G. P. De Gaudenzi, G. Marcheselli, S. Cara, M. Piredda, D. Spiga, A. S. Matharu. G. De Gioannis and A. Serpe: Int. J. Refract. Met. Hard Mater., 98 (2021) 105534.   DOI
3 T. E. Graedel, E. M. Harper, N. T. Nassar and B. K. Reck: PNAS, 112 (2015) 6295.   DOI
4 L. S. Friedman, K. C. Zagielski and L. A. Adanas: USA, US 3,184,169 (1965).
5 H. S. Sohn: Recycling of Common Metals, KNU Press, Daegu, (2020) 17.
6 E. Lassner and W. D. Schubert: Tungsten - Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds Kluwer Academic / Plenum Publishers, New York, US, (1999) 77.
7 Y. Annoura: J. Plasma Fusion Res., 96 (2020) 77.
8 J. W. Song, S. H. Lee, H. S. Hong, H. Y. Kang and S. J. Hong: J. Korean Powder Metall Inst., 19 (2012) 79.   DOI
9 B. Zeiler, A. Bartl and W. D. Schubert: Int. J. Refract. Met. Hard Mater., 98 (2021) 1.
10 E. Lassner and W. D. Schubert: Tungsten - Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds Kluwer Academic / Plenum Publishers, New York, US, (1999) 215.
11 USGS, http://minerals.usgs.gov/minerals/pubs/historicalstatistics/.
12 SMR GmbH: Tungsten in 2019, End Use Consumption, ITIA, (2020) 6.
13 H. H. Ahn and M. S. Lee: J. of Korean Inst. of Resources Recycling, 27 (2018) 3.
14 D.-G. Ahn: Bull. of KIM, 21 (2008) 28.
15 T. Makino, S. Nagai, F. Iskandar, K. Okuyama and T. Ogi: ACS Sustainable Chem. Eng., 6 (2018) 4246.   DOI
16 Y. Yamamoto, K. Sasaya, T. Fudo, A. Nakano, S. Yamanaka, T. Iguchi, F. Sato and A. Ikegaya: USA, US 9,249,479 B2 (2016).
17 M. Weil and W. D. Schubert: The Beautifum Colours of Tungsten Oxides, Tungsten Newletter June 2013, ITIA, (2013) 2.
18 T. Hayshi, F. Sato, K. Sasaya and A. Ikegaya: SEI Technical Review, 189 (2016) 8.
19 B. Zeiler, W. D. Schubert and A. Bartl: Recycling of Tungsten, Tungsten Newletter May 2018, ITIA, (2018) 5.
20 P. K. Katiyar and N. S. Randhawa: Int. J. Refract. Met. Hard Mater., 90 (2020) 1.
21 W. D. Schubert and B. Zeiler: Recycling of Tungsten, Tungsten Newletter August 2019, ITIA, (2019) 3.
22 E. M. Trent: USA, US 2,407,752 (1946).
23 P. G. Barnard, A. G. Startiper and H. Kenworthy: USA, US 3,595,484 (1971).
24 E. Altuncu, F. Ustel, A. Turk, S. Ozturk and G. Erdogan: Mater. Technol., 47 (2013) 115.
25 K. S. Kim, I. H Kim, C. G. Lee and C. B. Song: J. of Korean Inst. of Resources Recycling, 29 (2020) 35.
26 M. Nakamura and M. Tagusari: J. Jpn. Soc. Powder and Powder Metall., 52 (2005) 317.   DOI
27 S. Morita, T. Ohtsuka and O. Maeda: J. MMIJ, 123 (2007) 707.   DOI
28 A. G. Hartline, J. A. Campbell and T. T. Magel: USA, US 3,953,194 (1976).
29 A. A. Alhazza: Int. J. Refract. Met. Hard Mater., 27 (2009) 705.   DOI
30 H. Yuehui, C. Libao, H. Baiyun and P. K. Liaw: Int. J. Refract. Met. Hard Mater., 21 (2003) 227.   DOI
31 T. Ishida, T. Itakura, H. Moriguchi and A. Ikegaya: SEI Technical Review, 75 (2012) 38.
32 J. C. Lee, E. Y. Kim, J. H. Kim, W. Kim, B. S. Kim and B. D. Pandey: Int. J. Refract. Met. Hard Mater., 29 (2011) 365.   DOI
33 C. Edtmaier, R. Schiesser, C. Meissl, W. D. Schubert, A. Bock, A. Schoen and B. Zeiler: Hydrometallurgy, 76 (2005) 63.
34 H. Matsubara, K. Ohashi, O. Maeda and K. Hijikata: Japanese Patent, 52-108302(A) (1977).
35 A. Masoudi and H. Abbaszadeh: Am. J. Mater. Sci. Eng., 1 (2013) 15.
36 W. M. Shwayder: USA, US Patent 3,635,674 (1972).
37 M. Orefice, H. Audoor, Z. Li and K. Binnemans: Sep. Purif. Technol., 219 (2019) 281.   DOI
38 K. Binnemans and P. T. Jones: J. Sustain. Metall., 3 (2017) 570.   DOI
39 T. Kojima, T. Shimizu, R. Sasai and H. Itoh: J. Mater. Sci., 40 (2005) 5167.   DOI
40 S. Morimoto: J. of the Mining and Metallurgical Inst. of Japan, 94 (1981) 850.   DOI
41 R. Haubner, W. D. Schubert, E. Lassner, M. Schreiner and B. Lux: Int. J. Refract. Met. Hard Mater., 2 (1983) 108.
42 S. Yamada, Y. Yamamoto, A. Ichida and T. Nagasaka: J. Min. Mater. Process.Inst. Jpn., 109 (1993) 1175.
43 T. R. Wilken, W. R. Morcom, C. A. Wert and J. B. Woodhouse: Metall. Trans. B, 7B (1976) 598.