• Title/Summary/Keyword: magnetotelluric (MT)

Search Result 63, Processing Time 0.024 seconds

Magnetotelluric modeling considering vertical transversely isotropic electrical anisotropy (수직 횡등방성 전기적 이방성을 고려한 자기지전류탐사 모델링)

  • Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.232-240
    • /
    • 2015
  • Magnetotelluric (MT) survey investigates electrical structure of subsurface by measuring natural electromagnetic fields on the earth surface. For the accurate interpretation of MT data, the precise three-dimensional (3-D) modeling algorithm is prerequisite. Since MT responses are affected by electrical anisotropy of medium, the modeling algorithm has to incorporate the electrical anisotropy especially when analyzing time-lapse MT data sets, for monitoring engineered geothermal system (EGS) reservoir, because changes in different-vintage MT-data sets are small. This study developed a MT modeling algorithm for the simulation MT responses in the presence of electrical anisotropy by improving a pre-existing staggered-grid finite-difference MT modeling algorithm. After verifying the developed algorithm, we analyzed the effect of vertical transversely isotropic (VTI) anisotropy on MT responses. In addition, we are planning to extend the applicability of the developed algorithm which can simulate not only the horizontal transversely isotropic (HTI) anisotropy, but also the tiled transversely isotropic (TTI) anisotropy.

Use of Audio-Band on the Interpretation of Magnetotelluric Data (MT 탐사자료의 해석에서 AMT 대역 자료의 효용성)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.261-270
    • /
    • 2006
  • Two-dimensional (2-D) inversion of magnetotelluric (MT) data for two survey lines having south-north direction from Jeju Island has been carried out. Broad band MT sounding curves with good quality could be gathered by performing audio-frequency magnetotelluric (AMT) survey during the MT survey and by operating the remote reference in Kyushu Island, Japan. Comparison of the 2-D inversion model using MT band only and that using both AMT and MT bands for the field data as well as for the data from numerical 2-D modeling said that high frequency information from AMT survey can be useful for interpreting not only the shallow part but also the deep structures, especially when the formation is resistive. The 2-D inversion models of field data show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsolidated sedimentary layer. And they also show a conductive anomaly at the central part of each survey lines. It can be either the effect of the surrounding sea water, or the structures due to ancient volcanic events. But unfortunately by now, we do not have any further information about the anomaly.

Numerical Study on the Correction of Sea Effect in Magnetotelluric (MT) Data

  • Yang, Jun-Mo;Yoo, Hai-Soo
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.550-564
    • /
    • 2009
  • When magnetotelluric (MT) data are obtained in the vicinity of the coast, the surrounding seas make it difficult to interpret subsurface structure, especially the deep part of the subsurface. We introduce an iterative method to correct the sea effect, based on the previous topographic correction method that removes the distortion due to topographic changes in seafloor MT data. The method first corrects the sea effect in observed MT impedance, and then inverts corrected response in a model space without the sea. Due to mutual coupling between the sea and the subsurface structure, the correction and inversion steps are iterated until the changes in each result become negligible. The method is tested for 1- and 2-D structures using synthetic MT data produced by 3-D forward modeling including surrounding seas. In all cases, the method closely recovers the true structure assumed to generate synthetic responses after a few iterations.

Analysis of Static Shift and its Correction in Magnetotelluric Surveys (MT 탐사에서의 정적효과 및 보정법 분석)

  • Hanna Jang;Yoonho Song;Myung Jin Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • In magnetotelluric (MT) surveys, small inhomogeneities near the surface cause a static shift in which apparent resistivities shift regardless of frequency. As the static shift in MT data leads to errors in subsurface structure interpretation, many studies have been conducted over the past few decades to mitigate or remove the distortions it caused. The most representative method involves removing static shifts from the data before inversion. Conversely, static shifts can be corrected during inversion or included in the inversion process. In addition, other geophysical data can be used to remove static shifts. However, the correction methods are limited to one-dimensional (1D) static responses, and limitations remain in two- or three-dimensional (2D or 3D) interpretation of distorted MT data owing to static shifts. This study provides a foundation for future studies on static shift by analyzing several previously published methods.

An Application of Minimum Support Stabilizer as a Model Constraint in Magnetotelluric 2D Inversion (최소모델영역 연산자를 모델제한조건으로 적용한 2차원 MT 역산)

  • Lee, Seong-Kon
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.834-844
    • /
    • 2009
  • Two-dimensional magnetotelluric (MT) inversion algorithm using minimum support (MS) stabilizer functional was implemented in this study to enhance the contrast of inverted images. For this implementation, this study derived a formula in discrete form for creeping model updates in the least-squares linearized inversion. A spatially varying regularization parameter determination algorithm, which is known as ACB (Active Constraint Balancing), was also adopted to stabilize the inversion process when using MS stabilizer as a model constraint. Inversion experiments for a simple isolated body model show well the feature of MS stabilizer in concentrating the anomalous body compared with the second-order derivative model constraint. This study also compared MS stabilizer and the second-order derivative model constraints for a model having multiple anomalous bodies to show the applicability of the algorithm into field data.

A two-dimensional inversion of MT and AMT data from mid-mountain area of Jeiu island (제주도 중산간 지역 MT 및 AMT 탐사자료의 2차원 역산)

  • Lee, Tae-Jong;Song, Yoon-ho;Uchida,Toshihiro;Park, In-Wha;Lim, Sung-Keun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.21-26
    • /
    • 2005
  • Two-dimensional (2-D) inversion of magnetotelluric (MT) data for two survey lines having south-north direction from Jeiu Island has been carried out. The 2-D models show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsolidated sedimentary layer. And they also show a conductive anomaly at the central part of each survey lines. But unfortunately by now, we do not have any further information about the anomaly. Comparison of the 2-D inversion model using MT band only and that using both AMT and MT bands said that it is helpful for us to include AMT band as well as MT band in the inversion to interpret not only the shallow part but also the deep structures.

  • PDF

An efficient 3D inversion of magnetotelluric data

  • Han, Nu-Ree;Choi, Ji-Hyang;Nam, Myung-Jin;Kim, Hee-Joon;Lee, Tae-Jong;Song, Yoon-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.261-266
    • /
    • 2007
  • An efficient three-dimensional (3D) inversion of magnetotelluric (MT) data can be carried out by using approximate sensitivities or avoiding the calculation of a full sensitivity matrix. In this paper, we propose approximate sensitivities for efficient 3D MT inversion based on the Gauss-Newton method and test and compare four kinds of sensitivities. Applying the four sensitivities to both synthetic and field data shows that the effects of sensitivities are highly dependent on data and thus applying various combinations of sensitivities is recommended for efficient inversion and good images.

  • PDF

Correction of the Sea Effect in the Magnetotelluric (MT) Data Using an Iterative Tensor Stripping During Inversion (MT 자료 역산과정에서 반복적인 Tensor Stripping을 통한 해양효과 보정)

  • Yang, Jun-Mo;Lee, Chun-Ki;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.286-301
    • /
    • 2008
  • When magnetotelluric (MT) data are obtained in vicinity of the coast, the sea can distort observed MT responses, especially those of deep part of subsurface. We introduce an iterative method to correct the sea effect, based on the previous topographic correction method which removes the distortions due to topographic changes in seafloor MT data. The method first corrects the sea effect in observed MT impedance, and then inverts corrected responses in a model space without the sea. Due to mutual coupling between sea and subsurface structure, the correction and inversion steps are iterated until changes in each result become negligible. The method is validated for 1-D and 2-D structure using synthetic MT data produced by 3-D forward modeling including surrounding seas. In all cases, the method closely recovers the given structure after a few iterations. To test the applicability of the proposed method to field data, we generate synthetic MT data for the Jeju Island whose 1-D conductivity structure is well known, using 3-D forward modeling. The distortions due to the surrounding sea start to appear below the frequency about 1 Hz, and are relatively severe in the electrical field perpendicular to the coastline because of the location of the observation sites. The proposed method successfully eliminates the sea effect after three iterations, and both 1-D and 2-D inversion of corrected responses closely recover the given subsurface structure of the Jeju Island model.

Polarization characteristics of magnetotelluric fields in the Korean peninsula (한반도에서 관측된 MT(Magnetotelluric)장의 분극 특성)

  • Lee, Choon-Ki;Kwon, Byung-Doo;Lee, Heui-Soon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.35-38
    • /
    • 2006
  • The polarized direction of MT field was analyzed using the MT dataset measured in the Korean Peninsula. The atmospherics above 1 Hz has a large dispersion of polarized direction, whereas the Schumann resonance near 8 Hz exhibits the predominant direction ranging from $N20^{\circ}W$ to NS. The electromagnetic field variations below 0.1 Hz, induced by magnetic pulsations, show a strongly polarized direction of nearly NS. It results from the regular pulsations since the regular pulsation fields, driven by Alfv.n's wave in the magnetosphere, has a worldwide predominant direction of NS. The MT field strongly polarized along NS direction causes the poorly behaved XY impedance.

  • PDF

Magnetotelluric surveys from mid-mountain area of Jeju Island for evaluating possible structures for deep-seated geothermal energy (심부 지열에너지 개발 가능성 파악을 위한 제주도 증산간 지역에서의 MT 탐사)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.434-437
    • /
    • 2006
  • Though numerous drilling has been performed in Jeju Island for development of ground water, the wells are mostly located along the coast lines or at low altitude area, and can hardly be found on the mid-mountain area. Two-dimensional magnetotelluric (MT) surveys have been carried out to cover the lack of geological Informal ion on the mid-mountain area and to figure out any possible structures or evidences for deep geothermal energy remained. Two-dimensional (2-D) inversion of MT data for four survey lines surrounding the Halla mountain show a thick layer having around 10 ohm-m in the depth of a few hundred meters throughout the survey area, which can be considered as the unconsol idated sedimentary layer. And they also show a conductive anomaly extending to more than 2km depth at the central part of each survey lines, which can possibly be related with old volcanic activities during the formation of Halla Mt.. Further seological/geophysical investigations should be followed.

  • PDF