Browse > Article
http://dx.doi.org/10.7582/GGE.2015.18.4.232

Magnetotelluric modeling considering vertical transversely isotropic electrical anisotropy  

Kim, Bitnarae (Department of Energy & Mineral Resources Engineering, Sejong University)
Nam, Myung Jin (Department of Energy & Mineral Resources Engineering, Sejong University)
Publication Information
Geophysics and Geophysical Exploration / v.18, no.4, 2015 , pp. 232-240 More about this Journal
Abstract
Magnetotelluric (MT) survey investigates electrical structure of subsurface by measuring natural electromagnetic fields on the earth surface. For the accurate interpretation of MT data, the precise three-dimensional (3-D) modeling algorithm is prerequisite. Since MT responses are affected by electrical anisotropy of medium, the modeling algorithm has to incorporate the electrical anisotropy especially when analyzing time-lapse MT data sets, for monitoring engineered geothermal system (EGS) reservoir, because changes in different-vintage MT-data sets are small. This study developed a MT modeling algorithm for the simulation MT responses in the presence of electrical anisotropy by improving a pre-existing staggered-grid finite-difference MT modeling algorithm. After verifying the developed algorithm, we analyzed the effect of vertical transversely isotropic (VTI) anisotropy on MT responses. In addition, we are planning to extend the applicability of the developed algorithm which can simulate not only the horizontal transversely isotropic (HTI) anisotropy, but also the tiled transversely isotropic (TTI) anisotropy.
Keywords
electrical anisotropy; MT; monitoring; engineered geothermal system (EGS);
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Bedrosianm, P. A., Weckmann, U., Rittter, O., Hammer, C., Hubert, J., and Jung, A., 2004, Electromagnetic monitoring of the Gross Schonebeck stimulation experiment, proceedings Jahrestagung der Deutschen Geophysikalischen Gessellschaf, 64, 124-130.
2 Berdichevskii, M. N., Dmitriev, V. I., and Keller, G. V., 2002, Magnetotellurics in the context of the theory of ill-posed problems, No. 11, Society of Exploration Geophysicists Books.
3 Goldstein, N. E., 1988, Subregional and detailed exploration for geothermal-hydrothermal resources. Gordon and Breach Science Publishers, 1, 303-431.
4 Han, N. R., Nam, M. J., Kim, H. J., Lee, T. J., Song, Y. H., and Suh, J. H., 2008, Application of Two-Dimensional Boundary Condition to Three-Dimensional Magnetotelluric Modeling, Geophysics and Geophysical Exploration, 11(4), 318-325.
5 Klein, J. D., Martin, P. R., and Allen, D. F., 1997, The petrophysics of electrically anisotropic reservoirs, The Log Analyst, 38(3), 25-36.
6 Kim, H. J., Nam, M. J., Song, Y. H., and Suh, J. H., 2004, Review on the Three-dimensional magnetotelluric modeling, Korean Society of Earth and Exploration Geophysicists, 7(2), 148-154.
7 Lee, C. K., Lee, H. S., Kwon, B. D., Cho, I. K., Oh, S. H., and Lee, T. J., 2007, Electrical anisotropy of the Okchon belt inferred from magnetotelluric data, Journal of the Korean Earth Science Society, 28, 227-239.   DOI
8 Mann, J. E., 1965, The importance of anisotropic conductivity in magnetotelluric interpretation, Journal of Geophysical Research, 70, 2940-2942.   DOI
9 Martinelli, P., and Osella, A., 1997, MT forward modeling of 3-D anisotropic electrical conductivity structures using the Rayleigh-Fourier method, Journal of geomagnetism and geoelectricity, 49(11-12), 1499-1518.   DOI
10 Zhdanov, M. S., Wan, L., Constable, S., and Key, K., 2004, New development in 3-D marine MT modeling and inversion for off-shore petroleum exploration, SEG Technical Program Expanded Abstracts, pp. 588-591.
11 Mendrinos, E., Choropanitis, I., Polyzou, O., and Karytas, C., 2010, Exploring for geothermal resources in Greece, Geothermics, 39(1), 124-137.   DOI
12 Moran, J. H., and Gianzero, S., 1979, Effects of formation anisotropy on resistivity-logging measurements, Geophysics, 44, pp. 1266-1286.   DOI
13 Nam, M. J., Kim, H. J., Song, Y., Lee, T. J., and Suh, J. H., 2008, Three-dimensional topography corrections of magnetotelluric data, Geophysical Journal International, 174(2), 464-474.   DOI
14 Nam, M. J., and Song, Y. H., 2014, A study on magnetotelluricbased 4D imaging of engineered geothermal reservoir, Nov. 17-20, AFORE2014, Yeosu, pp. 179.
15 Orange, A. A., 1989, Magnetotelluric exploration for hydrocarbons, Proceedings of the IEEE, 77(2), 287-317.   DOI
16 Park, C. H., Cheon, S. W., Ku, B. J., and Nam, M. J., 2014, A Review and Analysis on Constructing Electrical Resistivity Models for Hydrocarbon Reservoirs Based on the Characteristics of Shale Distribution, Journal of Korean Society Mineral Energy Resource Eng., 51(1), 97-115.   DOI
17 Peacock, J. R., Thiel, S., Heinson, G. S., and Reid, P., 2013, Time-lapse magnetotelluric monitoring of an enhanced geothermal system, Society of Exploration Geophysicists, 78(3), B121-B130.
18 Pek, J., and Verner, T., 1997, Finite-difference modelling of magnetotelluric fields in two-dimensional anisotropic media, Geophysical Journal International, 128, 505-521.   DOI
19 Pham, V. N., Boyer, D., Therme, P, Yuan, X. C., Li, L., and Jin, G. Y., 1986, Partial melting zones in the crust in southern Tibet from magnetotelluric results, Nature, 319, 310-314.   DOI
20 Reddy, I. K., and Rankin, D., 1975, Magnetotelluric response of laterally inhomogeneous and anisotropic media, Society of Exploration Geophysicists, 40, 1035-1045.
21 Sasaki, Y., 1999, Three-dimensional frequency-domain electromagnetic modeling using the finite-difference method, Butsuri Tansa, 52, 421-431.
22 Slolon, K. D., Jones, A. G., Nelson, K. D., Unsworth, M. J., Kidd, W. F., Wei, W., Tan, H., Jin, S., Deng, M., Booker, J. R., Li, S., and Bedrosian, P., 2005, Structure of the crust in the vicinity of the Banggong-Nujiang suture in central Tibet from INDEPTH magnetotelluric data, Journal of Geophysical Research, 110, B10102.   DOI
23 Tezkan, B., Georgescu, P., and Fauzi, U., 2005, A radiomagnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania Geophysical Prospecting, 53, 311-323.   DOI
24 Tikhonov, A. N., 1950, On determining electrical characteristics of the deep layers of the earth's crust, Dokl. Aca. Nauk., USSR, 73, 295-297.
25 Unsworth, M., Soyer, W., Tuncer, V., Wagner, A., and Barners, D., 2007, Hydrogeologic assessment of the Amchitka Island nuclear test site (Alaska) with magnetotellurics. Geophysics, 72(3), B47-B57.   DOI
26 Vozoff, K., 1991, The magnetotelluric method, in Nabighian M. N., Electromagnetic methods in applied geophysics, Society of Exploration Geophysics, 2, 641-711.
27 Wannamaker, P. E., Hohmann, G. W., and Ward, S. H., 1984, Magnetotelluric responses of three-dimensional bodies in layered earths. Geophysics, 49(9), 1517-1533.   DOI
28 Weidelt, P., 1999, 3D conductivity models: implications of electrical anisotropy, Society of Exploration Geophysicists, pp. 119-137.