• 제목/요약/키워드: magnetic thin film

검색결과 612건 처리시간 0.03초

Magnetic Properties of Nanocrystalline CoW Thin Film Alloys Electrodeposited from Citrate Baths

  • Park, Doek-Yong;Ko, Jang-Myoun
    • 전기화학회지
    • /
    • 제6권4호
    • /
    • pp.236-241
    • /
    • 2003
  • Magnetic CoW thin film alloys were electrodeposited from citrate baths to investigate the resulting microstructure and magnetic properties. Deposit tungsten (W) content in the films electrodeposited at $70^{\circ}C$ were independent of current density, while coercivity decreased from hard $(H_{c,//}\~150\;Oe\;and\;H_{c.{\bot}}\;\~240\;Oe)$ to soft magnetic properties $(H_{c,//}\~20\;Oe\;and\;H_{c.{\bot}}\;\~30\;Oe)$ with increasing current densities from $10\;to\;100mA{\cdot}cm^2$, with deposit W content $(\~40\%)$ relatively unaffected by the applied current density. X-ray diffraction analysis indicated that hcp $Co_3W$ phases [(200), (201) and (220) planes] in the CoW films electrodeposited at $70^{\circ}C\;and\;10mA{\cdot}cm^{-2}$ were dominant, whereas amorphous CoW phases with small amount of hcp $Co_3W$ [(002) planes] were dominant with deposition at $70^{\circ}C\;and\;100mA{\cdot}cm^{-2}$. At intermediate current densities $(25\;and\;50mA{\cdot}cm^{-2}),\;hop\;Co_3W$ phases [(200), (002), (201) and (220)] were observed. The average grain size was measured to be 30 nm from Sheller formula. It is suggested that the change of the deposit coercivities in the CoW thin films electrodeposited at $70^{\circ}C$ is attributed to the change of microstructures with varying the current density. Nanostructured $Co_3W/amorphous-CoW$ multilayers were fabricated by alternating current density between 10 and $100 mA{\cdot}cm^{-2}$, varying the individual layer thickness. The magnetic properties of $Co_3W/amorphous-CoW$ multilayers were strongly dependent on the thickness of the alternating hard and soft magnetic thin films. The nanostructured $Co_3W/amorphous-CoW$ multilayers exhibited a shift from low to high coercivities suggesting a strong coupling effect.

홀센서 InSb 박막 이동도의 온도의존성 (Temperature Dependent Mdbility Characteristics of InSb Thin Film)

  • 이우선;조준호;최권우;김남오;김형곤;김상용;서용진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.582-585
    • /
    • 2001
  • InSb temperature dependent hall effect of multilayerd structures were investigated. According to variation of magnetic field measured hall coefficient, Hall mobility, carrier density and hall voltage. For the measurement of electrical properties of hall device, evaperated InSb thin film fabricated with series and parallel multilayers. We found that the XRD analysis of InSb thin film showed good properties at 200$^{\circ}C$, 60 minutes. Resistance of ohmic contact increased linearly due to increasing current. Some of device fabrication technique and analysis of Hall effect were discussed.

  • PDF

MODELING AND ANALYSIS ON THIN-FILM FLOW OVER A ROUGH ROTATING MAGNETIC DISK

  • Kim, Sung-Won;Moon, Byung-Moo
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.645-649
    • /
    • 1995
  • The depletion of thin liquid films due to the combined effect of centrifugation, surface roughness, and air-shear has recently been studied. While surface roughness of a rotating solid disk can be represented by deterministic cures, it has been argued that spatial random processes provide a more realistic description. Chiefly because of surface roughness, there is an asymptotic limit of retention of a thin film flowing on the rotating disk. The aim of this article is to model the depletion of thin-film flow and analyze the interplay of centrifugation, surface tension, viscosity, air-shear, disjoining pressure, and surface roughness that affect the depletion of the film. Also, the robustness of stochastic description of surface roughness is examined.

  • PDF

Magnetic Properties of Thin Films of a Magnetocaloric Material FeRh

  • Jekal, Soyoung;Kwon, Oryong;Hong, Soon Cheol
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 임시총회 및 하계학술연구발표회
    • /
    • pp.18-18
    • /
    • 2013
  • A FeRh alloy is a well-known efficient magnetocaloric material and some experimental and theoretical studies of bulk FeRh have been reported already by several groups. In this study we report first-principles calculations on magnetic properties of different thickness FeRh thin films in order to investigate the possibility to enhance further the magnetocaloric efficiency. We used Vienna Ab-initio Simulation Package (VASP) code. We found that the FeRh thin films have quite different magnetic properties from the bulk when the thickness is thinner than 6-atomic-layers. While bulk FeRh has a G-type antiferromagnetic (AFM) state, thin films which are thinner than 6-atomic-layers have an A-type AFM state or a ferromagnetic(FM) state. We will discuss possibility of magnetic phase transitions of the FeRh thin films in the view point of a magnetocaloric effect. And we found 4-, 5-, 6-layers films with Fe surface and 7-layers film with Rh surface are FM and they have dozens eV magnetocrystalline anisotropy (MCA) energy. MCA energy leads to determine energy barrier when magnetic states are changed by external magnetic field.

  • PDF

Magnetic properties of thin films of a magnetocaloric material FeRh

  • Jekal, Soyoung;Kwon, Oryong
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.294-298
    • /
    • 2013
  • A FeRh alloy is a well-known efficient magnetocaloric material and some experimental and theoretical studies of bulk FeRh have been reported already by several groups. In this study we report first-principles calculations on magnetic properties of different thickness FeRh thin films in order to investigate the possibility to enhance further the magnetocaloric efficiency. We used two methods of a Vienna Ab-initio Simulation Package (VASP) code and SIESTA package. We found that the FeRh thin films have quite different magnetic properties from the bulk when the thickness is thinner than 6-atomic-layers. While bulk FeRh has a G-type antiferromagnetic(AFM) state, thin films which are thinner than 6-atomic-layers have an A-type AFM state or a ferromagnetic (FM) state. We will discuss possibility of magnetic phase transitions of the FeRh thin films in the view point of a magnetocaloric effect. And we found 4-, 5-, 6-layers films with Fe surface and 7-layers film with Rh surface are FM and they have relatively small magnetocrystalline anisotropy (MCA) energy about less than 70 meV. The small MCA energy leads to reduction of the strength of magnetic field in operating a magnetic refrigerator.

  • PDF

Magnetic Properties of Multiferroic $BiFeO_3/BaTiO_3$ Bi-layer Thin Films

  • Yang, P.;Byun, S.H.;Kim, K.M.;Lee, Y.H.;Lee, J.Y.;Zhu, J.S.;Lee, H.Y.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.318-319
    • /
    • 2008
  • In this article, magnetic properties of multiferroic bi-layer $BiFeO_3$ (BFO)/$BaTiO_3$ (BTO) thin films were studied. It was found that the magnetization increased by the insertion of BTO buffer layer even though the interfacial stress was slightly relaxed, which indicated a coupling between the ferroelectric and ferromagnetic orders. Furthermore, with slightly increase of BFO film thickness, both BFO and BFO/BTO bi-layer films showed anisotropic magnetic properties with higher in-plane magnetization than the values measured out-of-plane. These are attributable to strain constraint effect at the interface.

  • PDF

마이크로스트립 선로에서 Sn-O 박막의 전도노이즈 흡수 특성 (Conduction Noise Absorption by Sn-O Thin Films on Microstrip Lines)

  • 김성수
    • 대한금속재료학회지
    • /
    • 제49권4호
    • /
    • pp.329-333
    • /
    • 2011
  • To develop wide-band noise absorbers with a special design for low-frequency performance, this study proposes a tin oxide (Sn-O) thin films as the noise absorbing materials in a microstrip line. Sn-O thin films were deposited on polyimide film substrates by reactive sputtering of the Sn target under flowing $O_{2}$ gas, exhibiting a wide variation of surface resistance (in the range of $10^{0}-10^{5}{\Omega}$) depending on the oxygen partial pressure during deposition. The microstrip line with characteristic impedance of $50\Omega$ was used for the measurement of noise absorption by the Sn-O films. The reflection parameter $(S_{11})$ increased with a decrease of surface resistance due to an impedance mismatch at the boundary between the film and the microstrip line. Meanwhile, the transmission parameter $(S_{21})$ diminished with a decrease of surface resistance resulting from an Ohmic loss of the Sn-O films. The maximum noise absorption predicted at an optimum surface resistance of the Sn-O films was about $150{\Omega}$. For this film, greater power absorption is predicted in the lower frequency region (about 70% at 1 GHz) than in conventional magnetic sheets of high magnetic loss, indicating that Ohmic loss is the predominant loss parameter for the conduction noise absorption in the low frequency band.

자기장 내 열처리에 의한 퍼멀로이 박막의 일축 이방성 자기장의 회전에 관한 연구 (A Study on the Rotation of Uniaxial Anisotropy Field of NiFe Thin Film by Magnetic Annealing)

  • 송용진;김기출;이충선
    • 한국자기학회지
    • /
    • 제11권4호
    • /
    • pp.163-167
    • /
    • 2001
  • DC 마그네트론 스퍼터링법으로 증착된 700 $\AA$의 NiFe 박막을 박막 증착시 형성시킨 자화용이축에 수직한 자기장을 인가하여 열처리한 후 일축 이방성 자기장의 회전을 조사하였다. NiFe 박막은 열처리온도 160 $^{\circ}C$에서 자화용이축과 자화곤란축을 구분할 수 없는 등방적인 상태가 되었고, 열처리온도가 증가함에 따라 다시 일축 이방성을 갖는 상태가 되었다. 열처리 온도가 400 $^{\circ}C$ 이상인 경우에 급격한 보자력의 증가를 보였다. 열처리 온도가 400 $^{\circ}C$인 경우에 XRD 분석과 AES depth profile은 NiFe 박막 내에서 (111) 방향으로 결정성장이 활발히 일어나며 인접한 전극 Au와 상호화산 현상도 광범위하게 일어남을 보여주었다.

  • PDF

Characterizing Pb-based superconducting thin films

  • Park, Sang-Il;Kim, Hong-Seok;Lee, Joon Sung;Doh, Yong-Joo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.36-39
    • /
    • 2014
  • We report on the superconducting and structural characteristics of Pb-based alloy ($Pb_{0.9}In_{0.1}$, $Pb_{0.8}In_{0.2}$ and $Pb_{0.85}Bi_{0.15}$) thin films, depending on the film deposition rate. The maximum critical magnetic field strength of $Pb_{0.85}Bi_{0.15}$ is almost six times larger than that of $Pb_{0.9}In_{0.1}$, and more rapid growth of the film enhances the critical magnetic field strength even for the same alloy material. Scanning electron microscopy inspection indicates that lower deposition rate condition is vulnerable to the formation of void structure in the film. Topographic images using atomic force microscopy are useful to optimize the deposition condition for the growth of smooth superconducting film. Our work can be utilized for future studies on hybrid superconducting devices using low-dimensional nanostructures.

Magnetic Properties and Magnetoimpedance Effect in Mumetal Thin Films

  • Cho, Wan-Shik;Yoon, Tae-Sick;Lee, Heebok;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • 제6권1호
    • /
    • pp.9-12
    • /
    • 2001
  • The dependence of the magnetoimpedance effect (MI) on magnetic properties has been investigated in mumetal thin films prepared by rf magnetron sputtering. Coercivity of thin films prepared at 400 W was about 0.4 Oe, and the magnetic anisotropy field of films deposited under a uniaxial magnetic field decreased with increasing film thickness. The saturation magnetization of mumetal films increased with rising input power and thickness and was smaller than that of permalloy films. Transverse incremental Permeability (TPR) of films of 1$\mu m$ thick increased with increasing effective permeability. The magneto impedance ratio (MIR) was proportional to TPR in films 1$\mu m$ thick but in spite of lower effective permeability at higher thicknesses, MIR increased due to skin effect. The height of the double peaks in the MIR curves decreased with decreasing anisotropy and thickness. The maximum MIR value for a 4$\mu m$ thick 75% at 36.5 MHz.

  • PDF