• Title/Summary/Keyword: magnetic sensors

Search Result 563, Processing Time 0.024 seconds

Wireless Digital Water Meter with Low Power Consumption for Automatic Meter Reading (원격검침을 위한 저 전력 무선 디지털 수도계량기)

  • Lee, Young-Woo;Oh, Seung-Hyueb
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.963-970
    • /
    • 2008
  • Recently, several papers for reading meters remotely using RFID/USN technologies have been presented. In the case of water meter, there has been neither commercial product nor paper. In this paper, we describe the design and implementation of wireless digital water meter with low power consumption. We use magnetic hole sensors to compute the amount of water consumption. The meter of water consumption is transferred via ZigBee wireless protocol to a gateway. Low power consumption design is essential since a battery should last till the life time of water meter. We present that dual batteries haying 3V, 3000mAh, would last 8 years by analyzing the real power consumption of our water meter.

APPLICATION OF BRILLOUIN SCATTERING SENSOR FOR SLOPE MOVEMENT (광 산란파에 의한 사면거동 예측)

  • Chang, Ki-Tae;Lee, Sang-Deok;Yoo, Byung-Sun
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2004
  • Optical fiber sensors have shown a potential to serve real time health monitoring of the structures. They can be easily embedded or attached to the structures and are not affected by the electro-magnetic field. Furthermore, they have the flexibility of the sensor size and very highly sensitive. In this study, we conducted several laboratory and field tests using a novel optical sensor based on Brillouin scattering. One of the advantages of this technique is that the bare fiber itself acts as sensing element without any special fiber processing or preparation. Test results have shown that BOTDR can be a great solution for sensor systems of Civil Engineering Smart Structures.

  • PDF

Detection and localization of partial discharge in high-voltage direct current cables using a high-frequency current transformer (HFCT를 활용한 고전압직류송전 케이블 부분방전 위치추정)

  • Hong, Seonmin;Son, Wooyoung;Cheon, Hyewon;Kang, Daekyoung;Park, Jonghoo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.105-108
    • /
    • 2021
  • Detection and localization of partial discharge are considered critical techniques for estimating the lifetimes of power cables. High-frequency current transformers (HFCTs) are commonly used for the detection of partial discharge in high-voltage alternating current (HVAC) power cables; however, their applicability is compromised by the limitations of the installation locations. HFCTs are typically installed in cable terminals or insulation joint boxes because HVACs induce strong time-varying magnetic fields around the cables, saturating the ferromagnetic materials in the HFCTs. Therefore, partial discharges near the installation locations can be detected. In this study, the feasibility of partial discharge detection using a HFCT was investigated for high-voltage direct current (HVDC) cables. We demonstrated that the HFCT could be installed at any location in the HVDC power cable to monitor partial discharge along the entire cable length. Furthermore, we showed that the HFCT could detect the location of partial discharge with high accuracy.

Fault detection and classification of permanent magnet synchronous machine using signal injection

  • Kim, Inhwan;Lee, Younghun;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.785-790
    • /
    • 2022
  • Condition monitoring of permanent magnet synchronous motors (PMSMs) and detecting faults such as eccentricity and demagnetization are essential for ensuring system reliability. Motor current signal analysis is the most commonly used precursor for detecting faults in the PMSM drive system. However, the current signature responds sensitively to the load and temperature of the motor, thereby making it difficult to monitor faults in real- applications. Therefore, in this study, a condition monitoring methodology that detects motor faults, including their classification with standstill conditions, is proposed. The objective is to detect and classify faults of PMSMs by using programmable inverter without additional sensors and systems for detection. Both DC and AC were applied through the d-axis of a three-phase motor, and the change in incremental inductance was investigated to detect and classify faults. Simulation with finite element analysis and experiments were performed on PMSMs in healthy conditions as well as with eccentricity and demagnetization faults. Based on the results obtained from experiments, the proposed method was confirmed to detect and classify types of faults, including their severity.

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

Construction of sports hall flooring with excellent properties by nanocomposites

  • Xianfang Zhang
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.155-164
    • /
    • 2024
  • The rapid evolution of intelligent sports equipment and gadgets has led to the transformation of smartphones into personalized coaching devices. This transformative role is central in today's technologically advanced landscape, addressing the needs of individuals with contemporary lifestyles. The development of intelligent sports gadgets is geared towards elevating overall quality of life by facilitating sports activities, workouts, and promoting health preservation. This categorization yields two primary types of devices: smart sports devices for exercise and smart health control devices, which encompass functionalities such as blood pressure monitoring and muscle volume measurement. Illustrative examples include smart headbands, smart socks, smart wristbands, and smart shoe soles. Significantly, the global market for smart sports devices has garnered substantial popularity among enthusiasts. Moreover, the integration of sensors within these devices has instigated a revolution in group and professional sports, facilitating the calculation of impact intensity and ball speed. The utilization of various types of smart sports equipment has proliferated, encompassing applications in both sports' performance and health monitoring across diverse demographics. This article conducts an assessment of the application of nanotechnology in the continuous modeling of the magnetic electromechanical sensor integrated within smart shoe soles, with a specific emphasis on its implementation in soccer training. The exploration delves into the nuanced intersection of nanotechnology and sports equipment, elucidating the intricate mechanisms that underlie the transformative impact of these advancements.

Magnetic Guidance Vehicle using Up-and-down Rotating Type Differential Drive Unit (상하 회전형 차동 구동부를 이용한 자기 유도 무인운반차)

  • Song, Hajun;Cho, Hyunhak;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.123-128
    • /
    • 2014
  • This paper presents the study about MGV(Magnetic guidance vehicle) with up-and-down rotating type differential drive unit. Previous MGV needs the landmarks to get the driving information and additional sensor to recognize the landmarks except for localization sensor. Previous MGV requires at least 2 drive units when common fixed differential drive unit is used because it occurs the problems with driving control and localization error from imbalance of the MGV's weight. To solve such problems, we propose the MGV using up-and-down rotating type differential drive unit. Proposed MGV recognizes the driving information from the pattern which is consisted of both pole of magnet without landmarks and additional sensors, and it control the backward movement using up-and-down rotating type differential drive unit instead of common drive units. Proposed MGV considers KF(Kalman filter) to improve the localization accuracy. To verify the performance of proposed method, we designed MGV for the experiment. As the results, we can confirm the performance of propoesed method to recognize the pattern and to control the backward movement. With respect to localization, proposed method has the less RMSE about 5.6904 mm than previous method.

A Study on the Implementation of the 2-Dimension Magnetic Fluxgate Sensor (2차원 Magnetic Fluxgate센서의 구현에 관한 연구)

  • Park, Yong-Woo;Kim, Nam-Ho;Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2002
  • We have presented a 2-dimensional fluxgate sensor with ferrite core, excitation, and pick-up coil. This fluxgate sensor system consists of a sensing element, driving circuits for excitation coil and signal processing for detecting second harmonic frequency component which is proportional to the DC magnetic to be measured. The sensor core is excited by a square waveform of voltage through the excitation coil of 80 turns. The second harmonic output of pick-up coil(x and y axis: 100 turns) is measured by FFT spectrum analyzer. This result is compared with output of PSD(phase sensitive detector) unit for detecting the second harmonic component. The measured maximum sensitivity is about 1580 V/T at driving frequency of 1.5 kHz and excitation current of 2 App. The nonlinearity of this system is measured about 2.3%(PSD) and about 1%(second harmonics of the pick-up). The angle error of the system is ${\pm}2$ %/FS.

TRIO (Triplet Ionospheric Observatory) CINEMA

  • Lee, Dong-Hun;Seon, Jong-Ho;Jin, Ho;Kim, Khan-Hyuk;Lee, Jae-Jin;Jeon, Sang-Min;Pak, Soo-Jong;Jang, Min-Hwan;Kim, Kap-Sung;Lin, R.P.;Parks, G.K.;Halekas, J.S.;Larson, D.E.;Eastwood, J.P.;Roelof, E.C.;Horbury, T.S.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.42.3-43
    • /
    • 2009
  • Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  • PDF

Multi-purpose Geophysical Measurements System Using PXI (PXI를 이용한 다목적 물리탐사 측정 시스템)

  • Choi Seong-Jun;Kim Jung-Ho;Sung Nak-Hun;Jeong Ji-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.224-231
    • /
    • 2005
  • In geophysical field surveys, commercial equipments often fail to resolve the subsurface target or even sometimes fail to be applied because they do not fit to the various field situations or the physical properties of the medium or target. We developed a geophysical measurement system, which can be easily adapted for the various field situations and targets. The system based on PXI with A/D converter and some stand alone equipment such as Network Analyzer was applied to borehole radar survey, borehole sonic measurement and electromagnetic noise measurement. The system for borehole radar survey consists of PXI, Network Analyzer, dipole antennas, GPIB interface is used for PXI to control Network Analyzer. The system for borehole sonic measurement consists of PXI, 24 Bit A/D converter, high voltage pulse generator, transmitting and receiving piezoelectric sensors. The electromagnetic noise measurement system consists of PXI, 24 Bit A/D converter, 2 horizontal component electric field sensors and 2 horizontal and 1 vertical component magnetic filed sensors. The borehole radar system has been successfully applied to detect the width of the artificial tunnel through which the borehole pass and to image buried steel pipe, while the commercial borehole radar equipment failed. The borehole sonic system was tested to detect the width of artificial tunnel and showed a reasonable result. The characteristic of electromagnetic noise was grasped at an urban area with the data from the electromagnetic noise measurement system. The system is also applied to characterize the signal distortion by induction between the electric cables in resistivity survey. The system can be applied various geophysical problems with a simple modification of the system and sensors.