Browse > Article
http://dx.doi.org/10.1186/s42649-020-00045-4

Scanning acoustic microscopy for material evaluation  

Hyunung Yu (Korea Research Institute of Science and Standards)
Publication Information
Applied Microscopy / v.50, no., 2020 , pp. 25.1-25.11 More about this Journal
Abstract
Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.
Keywords
Microscopy; Scanning; Acoustic; Defect; Delamination; Crack; Void; Non-destructive; Analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E.S. Morokov, V.M. Levin, Spatial resolution of acoustic microscopy in the visualization of interfaces inside a solid. Acoust. Phys. 65, 165-170 (2019). https://doi.org/10.1134/S106377101902009X   DOI
2 H. Park, S.T. Lee, Analyzing acoustic characteristics of multi-channel speaker directly driving flat panel display: Considering the acoustic stereo effects. Soc. Inf. Display 50(1), 1634-1636 (2019). https://doi.org/10.1002/sdtp.13262   DOI
3 Y. Saijo, F.E. Santos, H. Sasaki, T. Yambe, M. Tanaka, N. Hozumi, K. Kobayashi, N. Okada, Ultrasonic tissue characterization of atherosclerosis by a speed-of-sound microscanning system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1571-1577 (2007a). https://doi.org/10.1109/TUFFC.2007.427   DOI
4 Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, F. Dunn, Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic. Ultrasound Med. Biol. 23, 77-85 (1997). https://doi.org/10.1016/S0301-5629(96)00174-3   DOI
5 F. Schubert, M. Barth, R. Hipp, B. Kohler, in Handbook of Advanced. Non-Destructive Evaluation 1. Acoustic Microscopy (Springer, 2018), pp. 1-40
6 C.J.R. Sheppard, Ch. 8 - Scanning optical microscopy. Adv. Imaging Electron Phys. 213, 227-325 (2020). https://doi.org/10.1016/bs.aiep.2019.11.001   DOI
7 P. Anastasiadis, P.V. Zinin, High-frequency time-resolved scanning acoustic microscopy for biomedical applications. Open Neuroimaging J. 12, 69-85 (2018). https://doi.org/10.2174/1874440001812010069   DOI
8 C. Song, L. Xi, H. Jiang, Acoustic lens with variable focal length for photoacoustic microscopy. J. Appl. Phys. 114, 194703-1-194703-5 (2013). https://doi.org/10.1063/1.4832757   DOI
9 K. Wang, X. Yan, Performance analysis of ethylene-propylene diene monomer sound-absorbing materials based on image processing recognition. EURASIP J. Image Video Process. 128, 1-10 (2018). https://doi.org/10.1186/s13640-018-0372-9   DOI
10 Z. Wang, X. Liu, Z. He, L. Su, X. Lu, Intelligent detection of flip chip with the scanning acoustic microscopy and the general regression neural network. Microelectr. Eng. 217(15), 111127-1-111127-6 (2019). https://doi.org/10.1016/j.mee.2019.111127   DOI
11 I. Demirkana, M.B. Unlu, B. Bilen, Determining sodium diffusion through acoustic impedance measurements using 80 MHz scanning acoustic microscopy: Agarose phantom verification. Ultrasonics 94, 10-19 (2019). https://doi.org/10.1016/j.ultras.2018.12.013   DOI
12 Y. Qiu, S. Zhang, in IEEE 2017 Prognostics and System Health Management Conference. Study on the pin delamination of plastic encapsulated microcircuits using scanning acoustic microscope (2017), pp. 1-5. https://doi.org/10.1109/PHM.2017.8079308   DOI
13 J. Kim, J. Mamou, D. Kouame, A. Achim, A. Basarab, in IEEE International Ultrasonics Symposium. Spatio-temporal compressed quantitative acoustic microscopy (2019). https://doi.org/10.1109/ULTSYM.2019.8925562   DOI
14 H. Liang, K. Lu, X. Liu, J. Xue, The auto-focus method for scanning acoustic microscopy by sparse representation. Sens. Imaging 20, 33-48 (2019). https://doi.org/10.1007/s11220-019-0255-x   DOI
15 R.Gr. Maev, Acoustic microscopy for materials characterization Materials Characterization Using Nondestructive Evaluation (NDE) Woodhead Publishing, pp. 161-176 (2016). https://doi.org/10.1016/B978-0-08-100040-3.00006-7   DOI
16 Y. Saijo, H. Sasaki, N. Hozumi, K. Kobayashi, M. Tanaka, T. Yambe, Sound speed scanning acoustic microscopy for biomedical applications. Technol. Health Care 13(4), 261-267 (2005). https://doi.org/10.3233/THC-2005-13405   DOI
17 R. Shannon, G. Zucaro, J. Tallent, V. Collins, J. Carswell, A system for detecting failed electronics using acoustics. IEEE Instrum. Meas. Mag. 22(4), 32-37 (2019). https://doi.org/10.1109/MIM.2019.8782197   DOI
18 T. Takezaki, M. Kawano, S. Machida, D. Ryuzaki, Improvement in lateral resolution of through-transmission scanning acoustic tomography using capacitive micromachined ultrasound transducer. Microelectron. Reliab. 93, 22-28 (2019). https://doi.org/10.1016/j.microrel.2018.12.001   DOI
19 M. Wust, S.J. Rupitsch, 3-D Scanning Acoustic Microscope for Investigation of Curved-Structured Smart Material Compounds. Adv. Eng. Mater. 20, 1800409-1-1900409-8 (2018). https://doi.org/10.1002/adem.201800409   DOI
20 F. Bertocci, A. Grandoni, T. Djuric-Rissner, Scanning acoustic microscopy (SAM): A robust method for defect detection during the manufacturing process of ultrasound probes for medical imaging. Sensors 19, 4868-4886 (2019). https://doi.org/10.3390/s19224868   DOI
21 A.S. Dukhin, P.J. Goetz, Ch. 3 - Fundamentals of Acoustics in Homogeneous Liquids. Longitudinal Rheology 24, 91-125 (2010). https://doi.org/10.1016/S1383-7303(10)23003-X   DOI
22 Y. Qiu, S. Zhang, Z.P. Chen, Y. Li, M. Jiang, Counterfeit identification method of plastic encapsulated microcircuits using scanning acoustic microscope. J. Phys. Conf. Ser. 1074, 012102-1-012102-6 (2018). https://doi.org/10.1088/1742-6596/1074/1/012102   DOI
23 Y. Saijo, Acoustic microscopy: Latest developments and applications. Imaging Med. Imaging Med. 1(1), 47-63 (2009) https://www.openaccessjournals.com/articles/acoustic-microscopy-latest-developments-and-applications-8192.html
24 Y. Saijo, C.S. Jorgensen, P. Mondek, V. Sefranek, W. Paaske, Acoustic inhomogeneity of carotid arterial plaques determined by GHz frequency range acoustic microscopy. Ultrasound Med. Biol. 28(7), 933-937 (2002)
25 B. Bilen, L.T. Sener, I. Albeniz, M. Sezen, M.B. Unlu, M. Ugurlucan, Determination of ultrastructural properties of human carotid atherosclerotic plaques by scanning acoustic microscopy, micro-computer tomography, scanning electron microscopy and energy dispersive X-ray spectroscopy. Sci. Rep. 9(679), 1-10 (2019b). https://doi.org/10.1038/s41598-018-37480-z   DOI
26 A.I. Kustov, I.A. Miguel, Development of methods of acoustic microscopy inspection for monitoring of structure and properties of coatings for various purposes. Mater. Today Proc. 11, 203-211 (2019). https://doi.org/10.1016/j.matpr.2018.12.132   DOI
27 Y. Saijo, N. Hozumi, K. Kobayashi, N. Okada, T. Ishiguro, Y. Hagiwara, E.S. Filho, T. Yambe, in IEEE Engineering in Medicine and Biology Society, Lyon. Ultrasound Speed and Impedance Microscopy for in vivo Imaging (2007b), pp. 1350-1135. https://doi.org/10.1109/IEMBS.2007.4352548   DOI
28 Y. Zhu, L. Wang, Y. Behnamian, S. Song, R. Wang, Z. Gao, W. Hu, D.-H. Xia, Metal pitting corrosion characterized by scanning acoustic microscopy and binary image processing. Corros. Sci. 170, 108685-1-108685-8 (2020). https://doi.org/10.1016/j.corsci.2020.108685   DOI
29 S. Brand, A. Lapadatu, T. Djuric, P. Czurratis, J. Schischka, M. Petzold, Scanning acoustic gigahertz microscopy for metrology applications in threedimensional integration technologies. J. Micro/Nanolith 13(1), 011207-1-011207-9 (2014). https://doi.org/10.1117/1.JMM.13.1.011207 MEMS MOEMS   DOI
30 S. Cruz, A. Sousa, J.C. Viana, T. Martins, Analysis of the bonding process and materials optimization for mitigating the yellow border defect on optically bonded automotivedisplay panels. Displays 48, 21-28 (2017). https://doi.org/10.1016/j.displa.2017.02.003   DOI
31 N. Hozumia, S. Yoshidab, K. Kobayashi, Three-dimensional acoustic impedance mapping of cultured biological cells. Ultrasonics 99, 105966-1-105966-4 (2019). https://doi.org/10.1016/j.ultras.2019.105966   DOI
32 A. Kubit, T. Trzepiecinski, K. Faes, M. Drabczyk, W. Bochnowski, M. Korzeniowski, Analysis of the effect of structural defects on the fatigue strength of RFSSW joints using C-scan scanning acoustic microscopy and SEM. Fatigue Fract. Eng. Mater. Struct. 42(6), 1308-1321 (2019). https://doi.org/10.1111/ffe.12984   DOI
33 R. Gr. Maev, Acoustic Microscopy: Fundamentals and Applications Wiley-VCH Verlag, pp. 1-20 (2008). https://onlinelibrary.wiley.com/doi/book/10.1002/9783527623136   DOI
34 R. Gr. Maev, Advances in Acoustic Microscopy and High Resolution Imaging: From Principles to Applications Wiley-VCH Verlag, pp. 1-21 (2013). https://onlinelibrary.wiley.com/doi/book/10.1002/9783527655304   DOI
35 B.T. Bilen, M. Parlak, M.B. Unlu, Scanning acoustic microscopy of quantum dot aggregates. Biomed. Phys. Eng. Express 5, 065025 (2019a). https://doi.org/10.1088/2057-1976/ab519a   DOI
36 X. Yang, C. Fei, D. Li, X. Sun, S. Hou, J. Chen, Y. Yang, Multi-layer polymer-metal structures for acoustic impedance matching in high-frequency broadband ultrasonic transducers design. Appl. Acoust. 160, 107123-1-107123-6 (2020). https://doi.org/10.1016/j.apacoust.2019.107123   DOI
37 W. Yared, C.-Y. Chen, N. Sievers, W. Tillmann, R. Zielke, M. Schimpfermann, Void distribution in a brazed cemented carbide steel joint analyzed by X-ray microscopy. Measurement 141, 250-257 (2019). https://doi.org/10.1016/j.measurement.2019.04.045   DOI
38 Y. Zhu, C. Xu, D. Xiao, L. He, Microstructure size measurement based on C-scan image of scanning acoustic microscopy. Instrum. Meas. Metrologie 18(1), 63-68 (2019). https://doi.org/10.18280/i2m.180110   DOI