• Title/Summary/Keyword: magnetic scale

Search Result 702, Processing Time 0.029 seconds

NEW PROBES OF INTERGALACTIC MAGNETIC FIELDS BY RADIOMETRY AND FARADAY ROTATION

  • KRONBERG PHILIPP P.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.343-347
    • /
    • 2004
  • The energy injection of galactic black holes (BH) into the intergalactic medium via extragalactic radio source jets and lobes is sufficient to magnetize the IGM in the filaments and walls of Large Scale Structure at < [B] > ${\~}0.l{\mu}G$ or more. It appears that this process of galaxy-IGM feedback is the primary source of IGM cosmic rays(CR) and magnetic field energy. Large scale gravitational infall energy serves to re-heat the intergalactic magnetoplasma in localities of space and time, maintaining or amplifying the IGM magnetic field, but this can be thought of as a secondary process. I briefly review observations that confirm IGM fields around this level, describe further Faraday rotation measurements in progress, and also the observational evidence that magnetic fields in galaxy systems around z=2 were approximately as strong then, ${\~}$10 Gyr ago, as now.

FORMATION OF INTERMEDIATE-SCALE STRUCTURES IN SPIRAL GALAXIES

  • KIM WOONG-TAE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.243-248
    • /
    • 2004
  • Disk galaxies abound with intermediate-scale structures such as OB star complexes, giant clouds, and dust spurs in a close geometrical association with spiral arms. Various mechanisms have been proposed as candidates for their origin, but a comprehensive theory should encompass fundamental physical agents such as self-gravity, magnetic fields, galactic differential rotation, and spiral arms, all of which are known to exist in disk galaxies. Recent numerical simulations incorporating all these physical processes show that magneto-Jeans instability (MJI), in which magnetic tension resists the stabilizing Coriolis force of galaxy rotation, is much more powerful than swing-amplification or the Parker instability in forming self-gravitating intermediate-scale structures. The MJI occurring in shearing and expanding flows off spiral arms rapidly forms structures elongated along the direction perpendicular to the arms, remarkably similar to dust spurs seen in HST images of spiral galaxies. In highly nonlinear stages, these spurs fragment to form bound clumps, possibly evolving into bright arm and interarm H II regions, suggesting that all these intermediate-scale structures in spiral galaxies probably share a common dynamical origin.

Magnetic fields in clusters of galaxies

  • Roh, Soonyoung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.35.2-35.2
    • /
    • 2018
  • Magnetic fields in clusters of galaxies play a critical role in shaping up the intracluster medium. Their existence has been established through observations of synchrotron emission, especially from radio relics and halos, as well as observations of rotation measure. In the so-called Sausage relic, which is one of Mpc-size giant radio relics detected in the outskirts of merging clusters, for instance, the magnetic fields are believed to have a few ${\mu}G$ strength and a Mpc scale. The observed magnetic fields are conjectured to be produced by the process of small-scale turbulence dynamo. To investigate the dynamo origin, we simulate the development of turbulence and the follow-up amplification of magnetic fields in galaxy clusters using a three-dimensional magnetohydrodynamical(MHD) code. Turbulence is induced in highly stratified backgrounds expected in clusters, and driven sporadically mimicking major mergers. We here present preliminary results, aiming to answer whether the turbulence dynamo scenario can explain observed magnetic fields in clusters of galaxies.

  • PDF

INVERSE ENERGY CASCADE AND MAGNETIC HELICITY IN 3-DIMENSIONAL DRIVEN ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE

  • Kim, Hoon-Kyu;Cho, Jun-Hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.112.1-112.1
    • /
    • 2011
  • We present numerical simulations of inverse energy cascade and in driven three-dimensional (3D) electron magnetohydrodynamic (EMHD) turbulence. It has been known that inverse energy cascade only occurs in two-dimensional (2D) turbulence. However, we demonstrate that inverse energy cascade occurs in 3D driven EMHD turbulence. When magnetic helicity is injected on a small-scale, magnetic energy goes up to larger scales. The energy spectrum clearly shows inverse energy cascade. At the same time, magetic helicity spectrum also shows that the helicity goes up to larger scales. We obviously confirm inverse energy cascade. Net magnetic helicity for scales larger than the driving scale shows linear growth, and magnetic energy shows non-linear growth. On the other hand, when we drived turbulence without magnetic helicity, we do not observe inverse energy cascade.

  • PDF

Negative Turbulent Magnetic 𝛽 Diffusivity effect in a Magnetically Forced System

  • Park, Kiwan;Cheoun, Myung-Ki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.47.3-48
    • /
    • 2021
  • We studied the large scale dynamo process in a system forced by helical magnetic field. The dynamo process is basically nonlinear, but can be linearized with 𝛼&𝛽 coefficients and large scale magnetic field $\bar{B}$. This is very useful to the investigation of solar (stellar) dynamo. A coupled semi-analytic equations based on statistical mechanics are used to investigate the exact evolution of 𝛼&𝛽. This equation set needs only magnetic helicity ${\bar{H}}_M({\equiv}{\langle}{\bar{A}}{\cdot}{\bar{B}}{\rangle},\;{\bar{B}}={\nabla}{\times}{\bar{A}})$ and magnetic energy ${\bar{E}}_M({\equiv}{\langle}{\bar{B}}^2{\rangle}/2)$. They are fundamental physics quantities that can be obtained from the dynamo simulation or observation without any artificial modification or assumption. 𝛼 effect is thought to be related to magnetic field amplification. However, in reality the averaged 𝛼 effect decreases very quickly without a significant contribution to ${\bar{B}}$ field amplification. Conversely, 𝛽 effect contributing to the magnetic diffusion maintains a negative value, which plays a key role in the amplification with Laplacian ∇2(= - k2) for the large scale regime. In addition, negative magnetic diffusion accounts for the attenuation of plasma kinetic energy EV(= 〈 U2 〉/2) (U: plasma velocity) when the system is saturated. The negative magnetic diffusion is from the interaction of advective term - U • ∇ B from magnetic induction equation and the helical velocity field. In more detail, when 'U' is divided into the poloidal component Upol and toroidal one Utor in the absence of reflection symmetry, they interact with - B • ∇ U and - U • ∇ B from ∇ × 〈 U × B 〉 leading to 𝛼 effect and (negative) 𝛽 effect, respectively. We discussed this process using the theoretical method and intuitive field structure model supported by the simulation result.

  • PDF

Jitter Radiation for Gamma-ray Burst Prompt Emission

  • Mao, Ji-Rong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2011
  • We utilize the jitter radiation, which is the emission of relativistic electrons in the random and small-scale magnetic field, to investigate the high-energy emissions of gamma-ray bursts (GRBs). Under the turbulent scenario, the random and small-scale magnetic field is determined by the turbulence. We also estimate the acceleration and cooling timescales. We identify that some GRBs are possible cosmic-ray sources.

  • PDF

Morphology of radio relics in galaxy clusters

  • Fernandez, Paola Dominguez
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2021
  • Galaxy clusters host Mpc-scale diffuse radio emission giving us evidence of large-scale magnetic fields in the Universe. It is relevant to understand magnetic field amplification processes occurring at the center and outskirts of galaxy clusters. Each of these processes are believed to give rise to observed radio haloes and radio relics, respectively. In this work, we focus on studying the continuum and polarised emission in radio relics. We use threedimensional magnetohydrodynamical simulations of merger shock waves propagating through a magnetized, turbulent intracluster medium. Our model includes the diffusive shock acceleration (DSA) of cosmic ray electrons, their spatial advection and energy losses at run-time. We discuss the relation between the mock observation features and the underlying morphology of the magnetic field.

  • PDF

Three-dimensional evolution of a solar magnetic field that emerges, organizes and produces a flare and flare-associated eruptions of a flux rope and plasmoid

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.63.2-63.2
    • /
    • 2015
  • Solar flare is one of the energetic phenomena observed on the Sun, and it is often accompanied with eruptions such as global-scale eruption of a flux rope (filament/prominence eruption) and small-scale eruption of a plasmoid. A flare itself is a dissipative phenomenon where accumulated electric current representing free magnetic energy is dissipated quickly at a special location called a current sheet formed in a generally highly conductive solar corona. Previous studies have demonstrated how a solar magnetic field placed on the Sun forms a current sheet when magnetic shear is added to the field. Our study is focused on a self-consistent process of how a subsurface magnetic field emerges into the solar atmosphere and forms a current sheet in the corona. This study also gives light to a relation among a flare and two types of flare-associated eruptions; flux-rope eruption and plasmoid eruption.

  • PDF

THE ORDERING OF MAGNETIC FIELDS IN THE COSMOS

  • BIERMANN PETER L.;KRONBER PHILIPP P.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.527-531
    • /
    • 2004
  • It is argued that the key task in understanding magnetic fields in the cosmos is to comprehend the origin of their order or coherence over large length scales in galaxies. Obtaining magnetic fields can be done in stars, whose lifetime is usually $10^{10}$ rotations, while galactic disks have approximately 20 to 50 rotations in their lifetime since the last major merger, which established the present day gaseous disk. Disorder in the galactic magnetic fields is injected on the disk time scale of about 30 million years, about a tenth of the rotation period, so after one half rotation already it should become completely disordered. Therefore whatever mechanism Nature is using, it must compete with such a short time scale, to keep order in its house. This is the focal quest.