Negative Turbulent Magnetic 𝛽 Diffusivity effect in a Magnetically Forced System

  • Published : 2021.10.13

Abstract

We studied the large scale dynamo process in a system forced by helical magnetic field. The dynamo process is basically nonlinear, but can be linearized with 𝛼&𝛽 coefficients and large scale magnetic field $\bar{B}$. This is very useful to the investigation of solar (stellar) dynamo. A coupled semi-analytic equations based on statistical mechanics are used to investigate the exact evolution of 𝛼&𝛽. This equation set needs only magnetic helicity ${\bar{H}}_M({\equiv}{\langle}{\bar{A}}{\cdot}{\bar{B}}{\rangle},\;{\bar{B}}={\nabla}{\times}{\bar{A}})$ and magnetic energy ${\bar{E}}_M({\equiv}{\langle}{\bar{B}}^2{\rangle}/2)$. They are fundamental physics quantities that can be obtained from the dynamo simulation or observation without any artificial modification or assumption. 𝛼 effect is thought to be related to magnetic field amplification. However, in reality the averaged 𝛼 effect decreases very quickly without a significant contribution to ${\bar{B}}$ field amplification. Conversely, 𝛽 effect contributing to the magnetic diffusion maintains a negative value, which plays a key role in the amplification with Laplacian ∇2(= - k2) for the large scale regime. In addition, negative magnetic diffusion accounts for the attenuation of plasma kinetic energy EV(= 〈 U2 〉/2) (U: plasma velocity) when the system is saturated. The negative magnetic diffusion is from the interaction of advective term - U • ∇ B from magnetic induction equation and the helical velocity field. In more detail, when 'U' is divided into the poloidal component Upol and toroidal one Utor in the absence of reflection symmetry, they interact with - B • ∇ U and - U • ∇ B from ∇ × 〈 U × B 〉 leading to 𝛼 effect and (negative) 𝛽 effect, respectively. We discussed this process using the theoretical method and intuitive field structure model supported by the simulation result.

Keywords