DOI QR코드

DOI QR Code

NEW PROBES OF INTERGALACTIC MAGNETIC FIELDS BY RADIOMETRY AND FARADAY ROTATION

  • KRONBERG PHILIPP P. (Los Alamos National Laboratory, IGPP)
  • Published : 2004.12.01

Abstract

The energy injection of galactic black holes (BH) into the intergalactic medium via extragalactic radio source jets and lobes is sufficient to magnetize the IGM in the filaments and walls of Large Scale Structure at < [B] > ${\~}0.l{\mu}G$ or more. It appears that this process of galaxy-IGM feedback is the primary source of IGM cosmic rays(CR) and magnetic field energy. Large scale gravitational infall energy serves to re-heat the intergalactic magnetoplasma in localities of space and time, maintaining or amplifying the IGM magnetic field, but this can be thought of as a secondary process. I briefly review observations that confirm IGM fields around this level, describe further Faraday rotation measurements in progress, and also the observational evidence that magnetic fields in galaxy systems around z=2 were approximately as strong then, ${\~}$10 Gyr ago, as now.

Keywords

References

  1. Bagchi, J., En$\ss$lin, T. A., Miniati, F., Stalin, C. S., Singh, M., Raychaudhury, S., & Humeshkar, N. B. 2002, New Astronomy, 7, 249 https://doi.org/10.1016/S1384-1076(02)00137-9
  2. Chokshi, A., & Turner, E. L. 1992, MNRAS, 259, 421 https://doi.org/10.1093/mnras/259.3.421
  3. Deiss, B. M., Reich, W., Lesch, H., & Wielebinski, R. 2003, A&A, 321, 55
  4. En$\ss$lin, T. A., Kronberg, P. P., Perley, R. A., & Kassim, N. E. Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, MPE Report, eds. B$\ddot{o}$hringer, H. Feretti L., &Schuecker P. 1999, 271, 21
  5. Furlanetto, S. R., & Loeb, A. 2001, ApJ, 556, 619 https://doi.org/10.1086/321630
  6. Kim, K. T., Kronberg, P. P., Giovannini, G., & Venturi, T.L. 1989, Nature, 341, 720 https://doi.org/10.1038/341720a0
  7. Kim, K. T., Kronberg, P. P., Dewdney, P. E., & Landecker, T. L. 1990, ApJ, 355, 29 https://doi.org/10.1086/168737
  8. Kronberg, P. R, Dufton, Q. W., Li, H., & Colgate, S. A. 2001, ApJ, 560, 178 https://doi.org/10.1086/322767
  9. Kronberg, P. P., Colgate, S. A., Li, h., & Dufton, Q. W.2004, ApJ, 604, L77 https://doi.org/10.1086/383614
  10. Kronberg, P. R, Lesch, H., & Hopp, U. 1999, ApJ, 511, 56 https://doi.org/10.1086/306662
  11. Kronberg, P. P., Perry, J. J., & Zukowski, E. L. H. 1990, ApJ, 355, L31 https://doi.org/10.1086/185731
  12. Miniati, F., Ryu, D., Kang, H., & Jones, T. W. 2001a, ApJ, 559, 59 https://doi.org/10.1086/322375
  13. Miniati, F., Jones, T. W., Kang, H., & Ryu, D. 2001b, ApJ, 562, 233 https://doi.org/10.1086/323434
  14. Ryu, D. S., Kang, H. S, & Biermann, P. L. 1998, A&A, 335, 19
  15. Ryu, D. S., Kang, H. S., Hallman, E., & Jones, T. W. 2003, ApJ, 593, 599 https://doi.org/10.1086/376723
  16. Small, T. A., & Blandford, R. D. 1992, MNRAS, 259, 725 https://doi.org/10.1093/mnras/259.4.725
  17. Soltan, A. 1982, MNRAS, 200, 115 https://doi.org/10.1093/mnras/200.1.115
  18. Tremaine, S. D., et al. 2002, ApJ, 574, 740 https://doi.org/10.1086/341002

Cited by

  1. Discovery of giant radio galaxies from NVSS: radio and infrared properties vol.469, pp.3, 2017, https://doi.org/10.1093/mnras/stx860