DOI QR코드

DOI QR Code

FORMATION OF INTERMEDIATE-SCALE STRUCTURES IN SPIRAL GALAXIES

  • KIM WOONG-TAE (Astronomy Program, SEES, Seoul National University)
  • Published : 2004.12.01

Abstract

Disk galaxies abound with intermediate-scale structures such as OB star complexes, giant clouds, and dust spurs in a close geometrical association with spiral arms. Various mechanisms have been proposed as candidates for their origin, but a comprehensive theory should encompass fundamental physical agents such as self-gravity, magnetic fields, galactic differential rotation, and spiral arms, all of which are known to exist in disk galaxies. Recent numerical simulations incorporating all these physical processes show that magneto-Jeans instability (MJI), in which magnetic tension resists the stabilizing Coriolis force of galaxy rotation, is much more powerful than swing-amplification or the Parker instability in forming self-gravitating intermediate-scale structures. The MJI occurring in shearing and expanding flows off spiral arms rapidly forms structures elongated along the direction perpendicular to the arms, remarkably similar to dust spurs seen in HST images of spiral galaxies. In highly nonlinear stages, these spurs fragment to form bound clumps, possibly evolving into bright arm and interarm H II regions, suggesting that all these intermediate-scale structures in spiral galaxies probably share a common dynamical origin.

Keywords

References

  1. Baade, W. 1963, in The Evolution of Stars and Galaxies, ed. C. Payne-Gaposchkin (Cambridge: Harvard Univ. Press), 218
  2. Blitz, L., & Shu, F. H. 1980, ApJ, 238, 148 https://doi.org/10.1086/157968
  3. Blitz, L., & Williams, J. P. 1999, in The Origin of Stars and Planetary Systems, eds. C. J. Lada & N. D. Kylafis (Dordrecht: Kluwer), 3
  4. Dame, T. M., Elmegreen, B. G., Cohen, R. S., & Thaddeus, P. 1986, ApJ, 305, 892 https://doi.org/10.1086/164304
  5. Elmegreen, B. G., &: Elmegreen, D. M. 1983, MNRAS, 203, 31 https://doi.org/10.1093/mnras/203.1.31
  6. Elmegreen, B. G. 1987, ApJ, 312, 626 https://doi.org/10.1086/164907
  7. Elmegreen, B. G. 1995, in The 7th Guo Shoujing Summer School on Astrophysics: Molecular Clouds and Star Formation, eds. C. Yuan & Hunhan You (Singapore:Wor1d Scientific), 149
  8. Goldreich, P., & Lynden-Bell, D. 1965, MNRAS, 130, 97 https://doi.org/10.1093/mnras/130.2.97
  9. Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995, ApJ, 440, 742 https://doi.org/10.1086/175311
  10. Jeans, J. H. 1902, Phil. Trans. Roy. Soc. London, A199, 1
  11. Kim, J., Franco, J., Hong, S. S., Santill$\'a$n, A., & Martos, M. A. 2000, ApJ, 531, 873 https://doi.org/10.1086/308502
  12. Kim, W.-T., & Ostriker, E. C. 2001, ApJ, 559, 70 https://doi.org/10.1086/322330
  13. Kim, W.-T., & Ostriker, E. C. 2002, ApJ, 570, 132 https://doi.org/10.1086/339352
  14. Kim, W.-T., Ostriker, E. C., & Stone, J. M. 2002, ApJ, 581, 1080 https://doi.org/10.1086/344367
  15. Kim, W.-T., Ostriker, E. C., & Stone, J. M. 2003, ApJ, 599, 1157 https://doi.org/10.1086/379367
  16. Kim, W.-T., Hong, S. S., Yoon, S.-C., Lee, S. M., & Kim, J. 1999, in Numerical Astrophysics, eds. S. M. Miyama, K. Tomisaka, & T. Hanawa (Boston: Kluwer), 111
  17. Klein, R. I., Woods, T., & McKee, C. F. 2001, BAAS, 33, 915
  18. Lachi$\`e$ze-Rey, M., Ass$\'e$o, E., Cesarsky, C. J., & Pellat, R. 1980. ApJ, 238, 175 https://doi.org/10.1086/157970
  19. Lattanzio, J. C., Monagahan, J. J., Pongracic, H., & Schwarz, M. P. 1985, MNRAS, 215, 125 https://doi.org/10.1093/mnras/215.2.125
  20. Lin, C. C., & Shu, F. H. 1964, ApJ, 140, 646 https://doi.org/10.1086/147955
  21. Lin, C. C., & Shu, F. H. 1966, Proc. Nat. Acad. Sci., 55, 229 https://doi.org/10.1073/pnas.55.2.229
  22. Lynden-Bell, D. 1966, Observatory, 86, 57
  23. Mouschovias, T. Ch. 1974, ApJ, 192, 37 https://doi.org/10.1086/153032
  24. Oort, J. H. 1954, Bull. Astron. Inst. Netherlands, 12, 177
  25. Parker, E. N. 1966, ApJ, 145, 811 https://doi.org/10.1086/148828
  26. Parker, E. N. 1967, ApJ, 149, 535 https://doi.org/10.1086/149283
  27. Santill$\'a$n, A., Kim, J., Franco, J., Martos, M., Hong, S. S., & Ryu, D. 2000, ApJ, 545, 353 https://doi.org/10.1086/317782
  28. Scoville, N., & Rector, T. 2001, HST press release ; at http://oposite.stsci.edu/Pubinfo/PR/2001/10/index.html
  29. Scoville, N. Z., Polletta, M., Ewald, S., Stolovy, S. R., Thompson, R., & Rieke, M. 2001 AJ, 122, 3017 https://doi.org/10.1086/323445
  30. Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A. 1987, ApJ, 319, 730 https://doi.org/10.1086/165493
  31. Toomre, A. 1964, ApJ, 139, 1217 https://doi.org/10.1086/147861
  32. Vogel, S. N., Kulkarni, S. R., & Scoville, N. Z. 1988, Nature, 334, 402 https://doi.org/10.1038/334402a0

Cited by

  1. Global enhancement and structure formation of the magnetic field in spiral galaxies vol.609, pp.1432-0746, 2018, https://doi.org/10.1051/0004-6361/201629988