• Title/Summary/Keyword: magnetic entropy

Search Result 63, Processing Time 0.025 seconds

The Magnetic Entropy Change on La0.7Ba0.3Mn1-xFexO3 Compound

  • Hwang, J.S.;Jang, D.M.;Kim, K.S.;Lee, J.S.;Yu, S.C.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.30-33
    • /
    • 2013
  • The magnetocaloric effect and magnetization behavior have been analyzed in the double-perovskite $La_{0.7}Ba_{0.3}Mn_{1-X}Fe_XO_3$ compound with the sintering temperature at 1273 K. Samples were fabricated by the conventional solid-state reaction method. X-ray diffraction measurement revealed that all the samples had a single phase in orthorhombic. Detailed investigations of the magnetic entropy behavior of the samples were discussed with the variation of $T_C$. The magnetic entropy changes, ${\Delta}S_M$ of approximately 0.36-1.14 J/kg K were obtained in the temperature range of 145-350 K for the $La_{0.7}Ba_{0.3}Mn_{1-X}Fe_XO_3$ compound. The enhancement of the magnetic entropy change is believed to be due to changes in the microstructure, which changes the magnetic part of the entropy of a solid around the magnetic ordering temperature.

Relationship between transition temperature and magnetic entropy changes in manganite materials

  • Phan, Manh-Huong;Yu, Seong-Cho;A.N. Ulyanov
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.121-121
    • /
    • 2002
  • A theoretical consideration for entropy changes in a magnetic solid is given in a general manner and has been taken into account for such La$\sub$0.7/Ca$\sub$0.3-x/Ba$\sub$x/MnO$_3$(x = 0.12, 0.24, 0.3) compounds. The total entropy changes, in which the total entropy is decomposed into the magnetic, lattice, and electron entropies, are discussed in detail. (omitted)

  • PDF

Effect of Al on Structural and Magnetic Characteristics of CoCrFeNiMnAlx High Entropy Alloys

  • Majid Tavoosi;Ali Ghasemi;Gholam Reza Gordani;Mohammad Reza Loghman Estarki
    • Korean Journal of Materials Research
    • /
    • v.33 no.3
    • /
    • pp.95-100
    • /
    • 2023
  • This research examines the effect of adding aluminum on the structural, phasic, and magnetic properties of CoCrFe NiMnAlx high-entropy alloys. To this aim, the arc-melt process was used under an argon atmosphere for preparing cast samples. The phasic, structural, and magnetic properties of the samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrational magnetometry (VSM) analyses. Based on the results, the addition of aluminum to the compound caused changes in the crystalline structure, from FCC solid solution in the CoCrFeNiMn sample to CoCrFeNiMnAl BBC solid solution. It was associated with changes in the magnetic property of CoCrFeNiMnAlx high-entropy alloys, from paramagnetic to ferromagnetic. The maximum saturation magnetization for the CoCrFeNiMnAl casting sample was estimated to be around 79 emu/g. Despite the phase stability of the FCC solid solution with temperature, the solid solution phase formed in the CrCrFeNiMnAl high-entropy compound was not stable, and changed into FCC solid solution with temperature elevation, causing a reduction in saturation magnetization to about 7 emu/g.

Impact of Ba Substitution on the Magnetocaloric Effect in La1-xBaxMnO3 Manganites

  • Hussain, Imad;Anwar, M.S.;Kim, Eunji;Koo, Bon Heun;Lee, Chan Gyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.623-627
    • /
    • 2016
  • $La_{1-x}Ba_xMnO_3$ (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature $T_C{\sim}342K$. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near $T_C$. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/kgK under a magnetic field change of 2.5T for the $La_{0.6}Ba_{0.4}MnO_3$ composition. The relative cooling power (RCP) is 79.31 J/kg for the same applied magnetic field.

Large Magnetic Entropy Change in Single Crystalline and Ploystalline $La_{0.7}Ca_{0.3}MnO_3$ (망간산화물 $La_{0.7}Ca_{0.3}MnO_3$의 거대 자기 엔트로피 효과)

  • 신현수;주홍렬
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.4
    • /
    • pp.149-153
    • /
    • 2000
  • Large magnetic entropy change in single crystalline and polycrystalline perovskite manganites La$_{0.7}$Ca$_{0.3}$MnO$_3$ has been observed as magnetic field is changed. The large magnetic entropy change is believed to be caused by the abrupt reduction in magnetization as a result of 1st order-like magnetic transition. The large magnetic entropy change and easiness of the Curie temperature manipulation in the temperature range 100 K

  • PDF

Entropy Generation Minimization in MHD Boundary Layer Flow over a Slendering Stretching Sheet in the Presence of Frictional and Joule Heating

  • Afridi, Muhammad Idrees;Qasim, Muhammad;Khan, Ilyas
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1303-1309
    • /
    • 2018
  • In the present paper, we study the entropy analysis of boundary layer flow over a slender stretching sheet under the action of a non uniform magnetic field that is acting perpendicular to the flow direction. The effects of viscous dissipation and Joule heating are included in the energy equation. Using similarity transformation technique the momentum and thermal boundary layer equations to a system of nonlinear differential equations. Numerical solutions are obtained using the shooting and fourth-order Runge-Kutta method. The expressions for the entropy generation number and Bejan number are also obtained using a suggested similarity transformation. The main objective of this article is to investigate the effects of different governing parameters such as the magnetic parameter ($M^2$), Prandtl number (Pr), Eckert number (Ec), velocity index parameter (m), wall thickness parameter (${\alpha}$), temperature difference parameter (${\Omega}$), entropy generation number (Ns) and Bejan number (Be). All these effects are portrayed graphically and discussed in detail. The analysis reveals that entropy generation reduces with decreasing wall thickness parameter and increasing temperature difference between the stretching sheet and the fluid outside the boundary layer. The viscous and magnetic irreversibilities are dominant in the vicinity of the stretching surface.

Decreased entropy of unfolding increases the temperature of maximum stability: Thermodynamic stability of a thioredoxin from the hyperthermophilic archaeon Methanococcus jannaschii

  • Lee, Duck-Yeon;Kim, Kyeong-Ae;Kim, Key-Sun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2004
  • A thioredoxin from hyperthermophile, Methanococcus jannashii (MjTRX) was characterized by use of the differential scanning calorimetry to understand the mechanisms of thermodynamic stability. MjTRX has an unfolding transition temperature of 116.5$^{\circ}C$, although the maximum free energy of the unfolding (9.9 Kcal/mol) is similar to that of E. coli thioredoxin (ETRX, 9.0 Kcal/mol). However, the temperature of maximum stability is higher than ETRX by 20$^{\circ}C$, indicating that the unfolding transition temperature increased by shifting the temperature of maximum stability. MjTRX has lower enthalpy and entropy of the unfolding compared to ETRX maintaining a similar free energy of the unfolding. From the structure and the thermodynamic parameters of MjTRX, we showed that the unfolding transition temperature of MjTRX is increased due to the decreased entropy of the unfolding. Decreasing the unfolded state entropy and increasing the folded state entropy can decrease the entropy of the unfolding. In the case of MjTRX, the increased number of proline residues decreased the unfolded state entropy and the increased enthalpy in the folded state increased the folded state entropy.

  • PDF

Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet

  • Bhatti, M.M.;Abbas, T.;Rashidi, M.M.
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.468-475
    • /
    • 2016
  • In this article, entropy generation on MHD Williamson nanofluid over a porous shrinking sheet has been analyzed. Nonlinear thermal radiation and chemical reaction effects are also taken into account with the help of energy and concentration equation. The fluid is electrically conducting by an external applied magnetic field while the induced magnetic field is assumed to be negligible due to small magnetic Reynolds number. The governing equations are first converted into the dimensionless expression with the help of similarity transformation variables. The solution of the highly nonlinear coupled ordinary differential equation has been obtained with the combination of Successive linearization method (SLM) and Chebyshev spectral collocation method. Influence of all the emerging parameters on entropy profile, temperature profile and concentration profile are plotted and discussed. Nusselt number and Sherwood number are also computed and analyzed. It is observed that entropy profile increases for all the physical parameters. Moreover, it is found that when the fluid depicts non-Newtonian (Williamson fluid) behavior then it causes reduction in the velocity of fluid, however, non-Newtonian behavior enhances the temperature and nanoparticle concentration profile.

Magnetization and Magnetic Entropy Change in Superparamagnetic Co-Ferrite Nanoparticle (초상자성 코발트 페라이트 나노입자에 대한 자화 및 자기엔트로피 변화)

  • Ahn, Yang-Kyu;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.63-66
    • /
    • 2008
  • In order to the magnetization and magnetic entropy change for superparamagnetic ferrite nanoparticles, ultrafine cobalt ferrite particles were synthesized using a mircoemulsion method. The peak of X-ray diffraction pattern corresponds to a cubic spinel structure with the lattice constant 8.40 $\AA$. The average particle size, determined from X-ray diffraction line-broadening using Scherrer's, is 7.9 nm. The maximal magnetizations measured at 5 and 300 K are 24.3 emu/g and 17.2 emu/g, respectively. Superparamagnetic behavior of the sample is confirmed by the coincidence of the M vs. H/T plots at various temperatures. According to the thermodynamic theory, magnetic entropy change decreases with increasing temperature.

The Effect of Cr doping on the Magnetic and Magnetocaloric Properties of MnCoGe Alloys

  • Emre, S. Yuce
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.405-411
    • /
    • 2013
  • The structural, magnetic and magnetocaloric properties of $CoMn_{1-x}Cr_xGe$ (x=0.05-0.125) have been investigated by using electron microscopy, x-ray diffraction, calorimetric and magnetic measurements. In this study, our aim is to justify the magnetocaloric effect by tuning the structural and magnetic transition temperature with Cr doping on CoMnGe pure system. The substitution of Cr for Mn leads to a decrease of both structural and magnetic transition temperatures. However, structural and magnetic transition temperatures do not close to each other. From magnetization measurement, we calculate that isothermal entropy change associated with magnetic transition can be as high as 3.82 J $kg^{-1}K^{-1}$ at 302 K in a field of 7 T. Meanwhile, structural phase transition contribution to isothermal entropy change is calculated as 5.85 J $kg^{-1}K^{-1}$ at 322 K for 7 T.