References
- S.U.S. Choi, ASME-Publications-Fed. 231, 99 (1995).
- Y. Xuan, and Q. Li, J. Heat Trans. 125, 151 (2003). https://doi.org/10.1115/1.1532008
- J. Buongiorno, J. Heat Trans. 128, 240 (2006). https://doi.org/10.1115/1.2150834
- W. A. Khan and I. Pop, Int. J. Heat Mass Transf. 53, 2477 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
- M. Mustafa, T. Hayat, I. Pop, S. Asghar, and S. Obaidat, Int. J. Heat Mass Transf. 54, 5588 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.021
- M. Hassan, R. Ellahi, and A. Zeeshan, Math. Sci. Lett. 5, 1 (2016). https://doi.org/10.18576/msl/050101
- R. Ellahi, M. Hassan, and A. Zeeshan, Nanotech. IEEE Transac. 14, 726 (2015). https://doi.org/10.1109/TNANO.2015.2435899
- M. M. Bhatti and M. M. Rashidi, J. Mol. Liq. 221, 567 (2016). https://doi.org/10.1016/j.molliq.2016.05.049
- M. Sheikholeslami, K. Vajravelu, and M. M. Rashidi, Int. J. Heat Mass Trans. 92, 339 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.066
- A. Zeeshan, A. Majeed, and R. Ellahi, J. Mol. Liq. 215, 549 (2016). https://doi.org/10.1016/j.molliq.2015.12.110
- A. Bejan, CRC Press (1996).
- R. Ellahi, M. Hassan, and A. Zeeshan, Int. J. Heat Mass Trans. 81, 449 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.041
- A. Zeeshan, M. Hassan, R. Ellahi, and M. Nawaz, P. I. Mech. Eng. E-J Pro. 0954408916646139 (2016).
- H. F. Oztop and K. Al-Salem, Renew. Sust. Energ. Rev. 16, 911 (2012). https://doi.org/10.1016/j.rser.2011.09.012
- M. M. Rashidi, S. Abelman, and N. F. Mehr, Int. J. Heat Mass Transf. 62, 515 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004
- M. H. Abolbashari, N. Freidoonimehr, F. Nazari, and M. M. Rashidi, Powder Technol. 267, 256 (2014). https://doi.org/10.1016/j.powtec.2014.07.028
- M. H. Abolbashari, N. Freidoonimehr, F. Nazari, and M. M. Rashidi, Adv. Powder Technol. 26, 542 (2015). https://doi.org/10.1016/j.apt.2015.01.003
- M. Sheikholeslami and D. D. Ganji, Physica A. 417, 273 (2015). https://doi.org/10.1016/j.physa.2014.09.053
- M. Sheikholeslami and D. D. Ganji, Energy 75, 400 (2014). https://doi.org/10.1016/j.energy.2014.07.089
- N. S. Akbar, Entropy. 17, 1411 (2015). https://doi.org/10.3390/e17031411
- M. Sheikholeslami, T. Hayat, and A. Alsaedi, Int. J. Heat Mass Trans. 96, 513 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.059
- M. Sheikholeslami and S. Abelman, Nanotech. IEEE Transac. 14, 561 (2015). https://doi.org/10.1109/TNANO.2015.2416318
- M. Sheikholeslami, M. M. Rashidi, and D. D. Ganji, J. Mol. Liq. 212, 117 (2015). https://doi.org/10.1016/j.molliq.2015.07.077
- M. Sheikholeslami, R. Ellahi, M. Hassan, and S. Soleimani, Int. J. Numer. Method. H. 24, 1906 (2014). https://doi.org/10.1108/HFF-07-2013-0225
- Z. Abbas, M. Sheikh, and S. S. Motsa, Energy 95, 12 (2016). https://doi.org/10.1016/j.energy.2015.11.039
- J. A. Khan, M. Mustafa, T. Hayat, and A. Alsaedi, Int. J. Heat Mass Transf. 86, 158 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.078
- M. M. Rashidi, M. Ali, N. Freidoonimehr, B. Rostami, and M. A. Hossain, Adv. Mech. Eng. 6, 735939 (2014). https://doi.org/10.1155/2014/735939
- M. M. Rashidi, N. Vishnu Ganesh, A. K. Abdul Hakeem, and B. Ganga, J. Mol. Liq. 198, 234 (2014). https://doi.org/10.1016/j.molliq.2014.06.037
- M. Sheikholeslami, M. M. Rashidi, and D. D. Ganji, Comput. Methods in Appl. Mech. Eng. 294, 299 (2015). https://doi.org/10.1016/j.cma.2015.06.010
- M. S. Kandelousi, Eur. Phy. J. Pl. 129, 1 (2014). https://doi.org/10.1140/epjp/i2014-14001-y
- A. Zeeshan and A. Majeed, J. Magn. 21, 153 (2016). https://doi.org/10.4283/JMAG.2016.21.1.153
- M. Sheikholeslami, T. Hayat, and A. Alsaedi, Int. J. Heat Mass Transf. 96, 513 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.059
- M. Sheikholeslami, D. D. Ganji, and M. M. Rashidi, J. Taiwan Inst. Chem. Eng. 47, 6 (2015). https://doi.org/10.1016/j.jtice.2014.09.026
- M. Sheikholeslami, M. M. Rashidi, T. Hayat, and D. D. Ganji, J. Mol. Liq. 218, 393 (2016). https://doi.org/10.1016/j.molliq.2016.02.093
- M. S. Kandelousi, Phys. Lett. A. 378, 3331 (2014). https://doi.org/10.1016/j.physleta.2014.09.046
- M. Sheikholeslami, J. Braz. Soc. Mech. Sci. Eng. 37, 1623 (2015). https://doi.org/10.1007/s40430-014-0242-z
- M. M. Bhatti, T. Abbas, M. M. Rashidi, and M. E. S. Ali, Entropy. 18, 200 (2016). https://doi.org/10.3390/e18060200
- J. Qing, M. M. Bhatti, M. A. Abbas, M. M. Rashidi, and M. E. S. Ali, Entropy. 18, 123 (2016). https://doi.org/10.3390/e18040123
- M. M. Bhatti, T. Abbas, M. M. Rashidi, M. E. S. Ali, and Z. Yang, Entropy. 18, 224 (2016). https://doi.org/10.3390/e18060224
- M. Sheikholeslami, H. R. Ashorynejad, and P. Rana, J. Mol. Liq. 214, 86 (2016). https://doi.org/10.1016/j.molliq.2015.11.052
- M. M. Bhatti, A. Shahid, and M. M. Rashidi, Alexandria Eng. J. 55, 51 (2016). https://doi.org/10.1016/j.aej.2016.01.015
Cited by
- Effect of Slip Conditions and Entropy Generation Analysis with an Effective Prandtl Number Model on a Nanofluid Flow through a Stretching Sheet vol.19, pp.8, 2017, https://doi.org/10.3390/e19080414
- Numerical study of surface radiation and combined natural convection heat transfer in a solar cavity receiver vol.27, pp.10, 2017, https://doi.org/10.1108/HFF-10-2016-0419
- Computational study of non-Newtonian Eyring–Powell fluid from a vertical porous plate with biot number effects vol.39, pp.7, 2017, https://doi.org/10.1007/s40430-017-0761-5
- Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet vol.91, pp.10, 2017, https://doi.org/10.1007/s12648-017-1022-2
- Numerical Analysis of Energy Storage Systems Using Phase-Change Materials with Nanoparticles pp.1533-6808, 2017, https://doi.org/10.2514/1.T5252
- Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid pp.1588-2926, 2018, https://doi.org/10.1007/s10973-017-6918-8
- O nanofluid pp.2041-3009, 2017, https://doi.org/10.1177/0954408917732759
- -water nanofluid flow in a non-Darcy porous media vol.28, pp.3, 2018, https://doi.org/10.1108/HFF-04-2017-0160
- Vibration Analysis of Rectangular Plates Resting on Four Rigid Supports pp.1708-5284, 2018, https://doi.org/10.1108/WJE-07-2017-0189
- MHD flow of a kinetic postulate of liquids inaugurated fluid under thermal radiation effects pp.1208-6045, 2019, https://doi.org/10.1139/cjp-2018-0102
- On three-dimensional MHD Oldroyd-B fluid flow with nonlinear thermal radiation and homogeneous–heterogeneous reaction vol.40, pp.8, 2018, https://doi.org/10.1007/s40430-018-1297-z
- Natural Convection and Irreversibility Evaluation in a Cubic Cavity with Partial Opening in Both Top and Bottom Sides vol.21, pp.2, 2019, https://doi.org/10.3390/e21020116