Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.3.468

Numerical Study of Entropy Generation with Nonlinear Thermal Radiation on Magnetohydrodynamics non-Newtonian Nanofluid Through a Porous Shrinking Sheet  

Bhatti, M.M. (Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University)
Abbas, T. (Department of Mathematics, Quaid-I-Azam University)
Rashidi, M.M. (Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems, Tongji University)
Publication Information
Abstract
In this article, entropy generation on MHD Williamson nanofluid over a porous shrinking sheet has been analyzed. Nonlinear thermal radiation and chemical reaction effects are also taken into account with the help of energy and concentration equation. The fluid is electrically conducting by an external applied magnetic field while the induced magnetic field is assumed to be negligible due to small magnetic Reynolds number. The governing equations are first converted into the dimensionless expression with the help of similarity transformation variables. The solution of the highly nonlinear coupled ordinary differential equation has been obtained with the combination of Successive linearization method (SLM) and Chebyshev spectral collocation method. Influence of all the emerging parameters on entropy profile, temperature profile and concentration profile are plotted and discussed. Nusselt number and Sherwood number are also computed and analyzed. It is observed that entropy profile increases for all the physical parameters. Moreover, it is found that when the fluid depicts non-Newtonian (Williamson fluid) behavior then it causes reduction in the velocity of fluid, however, non-Newtonian behavior enhances the temperature and nanoparticle concentration profile.
Keywords
nanofluid; entropy generation; thermal radiation; shrinking sheet; SLM;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S.U.S. Choi, ASME-Publications-Fed. 231, 99 (1995).
2 Y. Xuan, and Q. Li, J. Heat Trans. 125, 151 (2003).   DOI
3 J. Buongiorno, J. Heat Trans. 128, 240 (2006).   DOI
4 W. A. Khan and I. Pop, Int. J. Heat Mass Transf. 53, 2477 (2010).   DOI
5 M. Mustafa, T. Hayat, I. Pop, S. Asghar, and S. Obaidat, Int. J. Heat Mass Transf. 54, 5588 (2011).   DOI
6 M. Hassan, R. Ellahi, and A. Zeeshan, Math. Sci. Lett. 5, 1 (2016).   DOI
7 R. Ellahi, M. Hassan, and A. Zeeshan, Nanotech. IEEE Transac. 14, 726 (2015).   DOI
8 M. M. Bhatti and M. M. Rashidi, J. Mol. Liq. 221, 567 (2016).   DOI
9 M. Sheikholeslami, K. Vajravelu, and M. M. Rashidi, Int. J. Heat Mass Trans. 92, 339 (2016).   DOI
10 A. Zeeshan, A. Majeed, and R. Ellahi, J. Mol. Liq. 215, 549 (2016).   DOI
11 A. Bejan, CRC Press (1996).
12 R. Ellahi, M. Hassan, and A. Zeeshan, Int. J. Heat Mass Trans. 81, 449 (2015).   DOI
13 A. Zeeshan, M. Hassan, R. Ellahi, and M. Nawaz, P. I. Mech. Eng. E-J Pro. 0954408916646139 (2016).
14 H. F. Oztop and K. Al-Salem, Renew. Sust. Energ. Rev. 16, 911 (2012).   DOI
15 M. M. Rashidi, S. Abelman, and N. F. Mehr, Int. J. Heat Mass Transf. 62, 515 (2013).   DOI
16 M. H. Abolbashari, N. Freidoonimehr, F. Nazari, and M. M. Rashidi, Powder Technol. 267, 256 (2014).   DOI
17 M. H. Abolbashari, N. Freidoonimehr, F. Nazari, and M. M. Rashidi, Adv. Powder Technol. 26, 542 (2015).   DOI
18 M. Sheikholeslami and D. D. Ganji, Physica A. 417, 273 (2015).   DOI
19 M. Sheikholeslami and D. D. Ganji, Energy 75, 400 (2014).   DOI
20 N. S. Akbar, Entropy. 17, 1411 (2015).   DOI
21 M. Sheikholeslami, T. Hayat, and A. Alsaedi, Int. J. Heat Mass Trans. 96, 513 (2016).   DOI
22 M. Sheikholeslami and S. Abelman, Nanotech. IEEE Transac. 14, 561 (2015).   DOI
23 M. Sheikholeslami, M. M. Rashidi, and D. D. Ganji, J. Mol. Liq. 212, 117 (2015).   DOI
24 M. Sheikholeslami, R. Ellahi, M. Hassan, and S. Soleimani, Int. J. Numer. Method. H. 24, 1906 (2014).   DOI
25 Z. Abbas, M. Sheikh, and S. S. Motsa, Energy 95, 12 (2016).   DOI
26 J. A. Khan, M. Mustafa, T. Hayat, and A. Alsaedi, Int. J. Heat Mass Transf. 86, 158 (2015).   DOI
27 M. M. Rashidi, M. Ali, N. Freidoonimehr, B. Rostami, and M. A. Hossain, Adv. Mech. Eng. 6, 735939 (2014).   DOI
28 M. M. Rashidi, N. Vishnu Ganesh, A. K. Abdul Hakeem, and B. Ganga, J. Mol. Liq. 198, 234 (2014).   DOI
29 M. Sheikholeslami, M. M. Rashidi, and D. D. Ganji, Comput. Methods in Appl. Mech. Eng. 294, 299 (2015).   DOI
30 M. S. Kandelousi, Eur. Phy. J. Pl. 129, 1 (2014).   DOI
31 A. Zeeshan and A. Majeed, J. Magn. 21, 153 (2016).   DOI
32 M. Sheikholeslami, T. Hayat, and A. Alsaedi, Int. J. Heat Mass Transf. 96, 513 (2016).   DOI
33 M. Sheikholeslami, D. D. Ganji, and M. M. Rashidi, J. Taiwan Inst. Chem. Eng. 47, 6 (2015).   DOI
34 M. Sheikholeslami, M. M. Rashidi, T. Hayat, and D. D. Ganji, J. Mol. Liq. 218, 393 (2016).   DOI
35 M. S. Kandelousi, Phys. Lett. A. 378, 3331 (2014).   DOI
36 M. Sheikholeslami, J. Braz. Soc. Mech. Sci. Eng. 37, 1623 (2015).   DOI
37 M. M. Bhatti, T. Abbas, M. M. Rashidi, and M. E. S. Ali, Entropy. 18, 200 (2016).   DOI
38 J. Qing, M. M. Bhatti, M. A. Abbas, M. M. Rashidi, and M. E. S. Ali, Entropy. 18, 123 (2016).   DOI
39 M. M. Bhatti, T. Abbas, M. M. Rashidi, M. E. S. Ali, and Z. Yang, Entropy. 18, 224 (2016).   DOI
40 M. Sheikholeslami, H. R. Ashorynejad, and P. Rana, J. Mol. Liq. 214, 86 (2016).   DOI
41 M. M. Bhatti, A. Shahid, and M. M. Rashidi, Alexandria Eng. J. 55, 51 (2016).   DOI