• 제목/요약/키워드: magnetic composites

검색결과 186건 처리시간 0.026초

Frequency Dependent Magnetoelectric Responses in [0.948 Na0.5K0.5NbO3-0.052 LiSbO3]-[Co1-xZnxFe2O4] Particulate Composites

  • Choi, Moon Hyeok;Noh, Byung Il;Yun, Woosik;Jung, Chaewon;Yang, Su Chul
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.303-307
    • /
    • 2022
  • Magnetoelectric (ME) properties of 3-0 type particulate composites have been investigated with respect to application features for reliable magnetic sensitivity and magnetically-induced output voltage. In order to figure out the magnetoelectric characteristics in the ME composites, frequency dependent ME responses were studied from [0.948 Na0.5K0.5NbO3-0.052 LiSbO3]-[Co1-xZnxFe2O4] (NKNLS)/Co1-xZnxFe2O4 (CZFO, x=0, 0.1, and 0.2). As a result, the maximal αME of 23.15 mV/cm·Oe was achieved from the NKNLS-CZFO (xZn = 0.1) composites at resonance frequency of 315 kHz and Hdc = 0 Oe. From the frequency dependent ME responses, it is clearly described that the self-biased ME composites can be used for applications as both magnetic sensors and energy harvesters, respectively.

전도성 그리드를 활용한 전자파 흡수차폐/방열 복합소재 필름 (A Conductive-grid based EMI Shielding Composite Film with a High Heat Dissipation Characteristic)

  • 박병진;류승한;권숙진;김수련;이상복
    • Composites Research
    • /
    • 제35권3호
    • /
    • pp.175-181
    • /
    • 2022
  • 무선통신기술의 발전과 함께 통신기기의 활용영역은 기하급수적으로 증가하고 있으며, 이에 따라 통신기기 성능의 저하를 막기 위한 전자파 노이즈 간섭문제 해결 및 방열문제 해결 소재에 대한 관심이 높아지고 있다. 본 연구에서는 전자파 차폐와 우수한 방열특성을 동시에 가질 수 있는 복합소재 필름을 제안하였다. 이 필름은 고분자 수지에 자성 및 방열 필러 물질이 분산된 복합소재 레이어와 전도성 그리드로 구성되어 있다. 복합소재 레이어의 조성 및 특성에 대한 제어 및 전도성 그리드 형상에 대한 설계를 통해 높은 전자파 차폐능(>40 dB), 낮은 전자파 반사능(<3 dB), 우수한 열전도도(>10 W/m·K)를 5G 통신 대역인 26.5 GHz에서 500 ㎛ 이하의 극박 필름으로 달성하는 데 성공하였다.

ME 소자의 저주파 등가회로 모델링 (Electric Circuits Modeling of Magnetoelectric Bulk Composites in Low Frequency)

  • 정수태;류지구
    • 한국전기전자재료학회논문지
    • /
    • 제26권7호
    • /
    • pp.515-521
    • /
    • 2013
  • Magnetoelectric(ME) bulk composites with PZT-PNN-PZN/$Fe_2O_4$ were prepared by using a conventional ceramic methods and investigated on the ME voltage vs frequency of ac magnetic fields. We made the electric equivalent circuits by using the Maxwell-Wagner model and simulated the frequency dependence of ME voltage in low frequency region. ME devices were described by a series of two equivalent circuits of piezoelectric and magnetic, which have the relaxation time ${\tau}$ due to the interaction between ME device and load resistor. Equivalent circuit of piezoelectric material is independent of frequency. However ferrite magnetic materials have Debye absorption and dipolar dispersion, whose equivalent circuit is a function of frequency. Therefore we suggest the resistance in the equivalent circuit is proportion to $1+{\omega}^2{\tau}^2$ and the capacitance is in inverse proportion to $1+{\omega}^2{\tau}^2$ in the magnetic materials.

Iron oxide nanopowder synthesized by electroerosion dispersion (EED) - Properties and potential for microwave applications

  • Halbedel, Bernd;Prikhna, Tatiana;Quiroz, Pamela;Schawohl, Jens;Kups, Thomas;Monastyrov, Mykola
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1410-1414
    • /
    • 2018
  • Magnetic nanoparticles (MNP) have attracted considerable interest in many fields of research and applied science due to their impressive properties. In the past, especially biomedical problems have promoted the development of MNPs. For technical applications e.g. wastewater treatment and absorption of electromagnetic waves, the existing synthesis approaches are too expensive and/or the producible quantities are too low. In this work we present a method for simple preparation of size-controlled magnetic iron oxide nanoparticles by electroerosion dispersion (EED) of carbon steel in water. We describe the synthesis method, the laboratory installation and discuss the structural, chemical and electromagnetic properties of the synthetized EED powders as well as their applicability for microwave absorption compared to other available ferrite powders.

Design of New Type Universal Motor Using Soft Magnetic Composites

  • Kim Byung-Taek
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.211-215
    • /
    • 2006
  • This paper presents a new structure for the universal motor using soft magnetic composite (SMC). The stator for this new type of motor is made by combination of the SMC pole and the silicon steel yoke. The shape of the 3D SMC pole is designed to minimize ohmic loss and amount of stator coil. To design the pole shape, the 3D analysis in the design procedure is replaced with an equivalent 2D analysis. Finally, the optimal shape is analyzed by 3D FEM and the performance is discussed.

복합교반법으로 제조한 금속복합재료의 Thixoforming용 재가열공정 (Reheating Process of Metal Matrix Composites Fabricated by Combined Stirring Process for Thixoforming)

  • 이동건;강충길
    • 소성∙가공
    • /
    • 제11권1호
    • /
    • pp.45-53
    • /
    • 2002
  • The forming process of metal matrix composites by die casting and squeeze casting process are limited in size and dimension In term of final parts. The melt strirring method have the problems that the homogeneous distribution of the reinforcements is difficult due to the low weldability and the density difference between the molten metal and the reinforcement. The thixoforming process for metal matrix composites has numerous advantages compacted to die casting, squeeze casting and compocasting. However, for the thixofoming process, the billet with the desired volume fraction must be heated to obtain a uniform temperature distribution over the entire cross-sectional areas. To obtain the reheating conditions of composites, the particulate reinforced metal matrix composites for thixoforming were fabricated by combined stirring process which is simultaneously performed with electro-magnetic stirring and mechanical stirring process. The matrix alloy and reinforcement are used to aluminum alloy(A357) and SiCp with diameter 14, $25{\mu}m$, respectively. The microstructure characteristics were investigated by changing the volume fraction and reinforcement size. The heating conditions to obtain the uniform temperature distribution in cross section area of fabricated metal matrix composites billet are proposed with heating time, the heating temperature and the holding time.

Electrical Transport Properties and Magnetoresistance of (1-x)La0.7Sr0.3MnO3/xZnFe2O4 Composites

  • Seo, Yong-Jun;Kim, Geun-Woo;Sung, Chang-Hoon;Lee, Chan-Gyu;Koo, Bon-Heun
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.137-141
    • /
    • 2010
  • The $(1-x)La_{0.7}Sr_{0.3}MnO_3(LSMO)/xZnFe_2O_4$(ZFO) (x = 0, 0.01, 0.03, 0.06 and 0.09) composites were prepared by a conventional solid-state reaction method. We investigated the structural properties, magnetic properties and electrical transport properties of (1-x)LSMO/xZFO composites using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-cooled dc magnetization and magnetoresistance (MR) measurements. The XRD and SEM results indicate that LSMO and ZFO coexist in the composites and the ZFO mostly segregates at the grain boundaries of LSMO, which agreed well with the results of the magnetic measurements. The resistivity of the samples increased by the increase of the ZFO doping level. A clear metal-to-insulator (M-I) transition was observed at 360K in pure LSMO. The introduction of ZFO further downshifted the transition temperature (350K-160K) while the transition disappeared in the sample (x = 0.09) and it presented insulating/semiconducting behavior in the measured temperature range (100K to 400K). The MR was measured in the presence of the 10kOe field. Compared with pure LSMO, the enhancement of low-field magnetoresistance (LFMR) was observed in the composites. It was clearly observed that the magnetoresistance effect of x = 0.03 was enhanced at room temperature range. These phenomena can be explained using the double-exchange (DE) mechanism, the grain boundary effect and the intrinsic transport properties together.

니켈-아연 페라이트복합재의 자기적특성과 전파흡수특성 (The Magnetic and Microwave Absorbing Characteristics of Ni-Zn Ferrite Composites)

  • 조성백;오재희
    • 한국자기학회지
    • /
    • 제3권2호
    • /
    • pp.115-120
    • /
    • 1993
  • 화학양론적 조성을 갖는 Ni-Zn ferrite에서 Ni/Zn 비의 변화에 따른 전파흡수체의 성능 평가 지수, 정합주파수 및 정합두께와 자기적인 변수와의 상관관계를 조사하였다. Ni/Zn 비가 감소 할수록 ${\mu}_{r}$의 최대치는 저주파수 영역으로 이동하며 Ni/Zn 비가 1.0인 경우 ${\mu}_{r}$의 값은 다른 조성에 비해 높은 값을 가짐을 확인할 수 있었다. Ni/Zn ferrite 복합제는 1-12 GHz 영역에서 2개의 정합주파수($f_{m1}$, $f_{m2}$)및 정합두께 ($d_{m1}$, $d_{m2}$)가 존재하며 $f_{m1}$$f_{r}$(공명주파수)과 비례하며 $f_{m2}$는 포화자화값에 비례함을 확인하였다.

  • PDF

Thixoforming을 위한 입자강화형 금속복합재료의 Reheating 공정 (Reheating Process of Particulates Reinforced Metal Matrix Composites for Thixoforming)

  • 이동건;안성수;강충길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.218-223
    • /
    • 2000
  • A both mixing process of electro-magnetic stirring and mechanical process technique were used to fabricate particulate metal matrix composites(PMMCs) for variation of particle size. The PMMCs were tested for their tensile test for with and without heat treatment with T6. PMMCs fabrication processing conditions for both electrical and mechanical process are also suggested. In order to thixoforming of PMMCs, fabricated billet are reheated by using the optimal coil designed as a function of length between PMMC billet and coil surface, coil diameter and billet length. The effect of reinforcement distribution on billet temperature variation are investigated with calculated solid fraction theory proposed as a function of matrix alloy and volume fraction of reinforcement.

  • PDF

Fabrication of Nano-sized Metal Dispersed Magnesia Based Composites and Related Mechanical and Magnetic Properties

  • Choa, Yong-Ho;Tadachika Nakayama;Tohru Sekino;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • 제5권4호
    • /
    • pp.395-399
    • /
    • 1999
  • MgO/metal nanocomposite powder mixtures were prepared by solution chemical processes to obtain suitable structure for ceramic/metal nanocomposites. Nickel or cobalt nitrate, as a source of metal dispersion, was dissolved into alcohol and mixed with magnesia powder. After calcined in air, these powders were reduced by hydrogen. Densified nanocomposites were successively obtained by Pulse Electric Current Sintering (PECS) process. The dispersed metal partical size depended on temperature and time in calcination and reduction processes. The phase analyses in the synthesized powders as a functioni of temperature were tracked using a dynamic high temperature X-ray diffractioni (HTXRD) system. Phase and crystallite size analyses were done using X-ray diffractioni and TEM. The MgO/metal nanocomposites were successfully fabricated, and ferromagnetic responses with enhanced coercive force were also investigated for these composites.

  • PDF