Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.3.14

Frequency Dependent Magnetoelectric Responses in [0.948 Na0.5K0.5NbO3-0.052 LiSbO3]-[Co1-xZnxFe2O4] Particulate Composites  

Choi, Moon Hyeok (Department of Chemical Engineering (BK21 FOUR), Dong-A University)
Noh, Byung Il (Department of Chemical Engineering (BK21 FOUR), Dong-A University)
Yun, Woosik (Department of Chemical Engineering (BK21 FOUR), Dong-A University)
Jung, Chaewon (Department of Chemical Engineering (BK21 FOUR), Dong-A University)
Yang, Su Chul (Department of Chemical Engineering (BK21 FOUR), Dong-A University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.3, 2022 , pp. 303-307 More about this Journal
Abstract
Magnetoelectric (ME) properties of 3-0 type particulate composites have been investigated with respect to application features for reliable magnetic sensitivity and magnetically-induced output voltage. In order to figure out the magnetoelectric characteristics in the ME composites, frequency dependent ME responses were studied from [0.948 Na0.5K0.5NbO3-0.052 LiSbO3]-[Co1-xZnxFe2O4] (NKNLS)/Co1-xZnxFe2O4 (CZFO, x=0, 0.1, and 0.2). As a result, the maximal αME of 23.15 mV/cm·Oe was achieved from the NKNLS-CZFO (xZn = 0.1) composites at resonance frequency of 315 kHz and Hdc = 0 Oe. From the frequency dependent ME responses, it is clearly described that the self-biased ME composites can be used for applications as both magnetic sensors and energy harvesters, respectively.
Keywords
Frequency dependent; Self-biased; Magnetoelectric; Piezoelectric; Magnetostrictive; Particulate composites;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. Ortega, A. Kumar, J. F. Scott, and R. S. Katiyar, J. Phys.: Condens. Matter, 27, 504002 (2015). [DOI: https://doi.org/10.1088/0953-8984/27/50/504002]   DOI
2 S. Liu, S. Yan, H. Luo, L. He, J. He, Z. Hu, S. Huang, and L. Deng, Ceram. Int., 44, 3712 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2017.11.151]   DOI
3 J. Ma, C. Xin, J. Ma, Q. Zhang, and C. Nan, Sci. Bull., 61, 378 (2016). [DOI: https://doi.org/10.1007/s11434-016-1002-5]   DOI
4 S. C. Yang, C. W. Ahn, K. H. Cho, and S. Priya, J. Am. Ceram. Soc., 94, 3889 (2011). [DOI: https://doi.org/10.1111/j.1551-2916.2011.04580.x]   DOI
5 M. Kumari, C. Prakash, and R. Chatterjee, J. Magn. Magn. Mater., 429, 60 (2017). [DOI: https://doi.org/10.1016/j.jmmm.2017.01.010]   DOI
6 V. G. Patil, S. E. Shirsath, S. D. More, S. J. Shukla, and K. M. Jadhav, J. Alloys Compd., 488, 199 (2009). [DOI: https://doi.org/10.1016/j.jallcom.2009.08.078]   DOI
7 K. Praveena, K. Sadhana, H. L. Liu, and S. R. Murthy, J. Mater. Sci.: Mater. Electron., 27, 12680 (2016). [DOI: https://doi.org/10.1007/s10854-016-5402-8]   DOI
8 J. Zhang, P. Li, Y. Wen, W. He, A. Yang, and C. Lu, Smart Mater. Struct., 23, 095028 (2014). [DOI: https://doi.org/10.1088/0964-1726/23/9/095028]   DOI
9 S. Marauska, R. Jahns, H. Greve, E. Quandt, R. Knochel, and B. Wagner, J. Micromech. Microeng., 22, 065024 (2012). [DOI: https://doi.org/10.1088/0960-1317/22/6/065024]   DOI
10 I. C. Nlebedim, K. W. Dennis, R. W. McCallum, and D. C. Jiles, J. Appl. Phys., 115, 17A519 (2014). [DOI: https://doi.org/10.1063/1.4866230]   DOI
11 W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 442, 759 (2006). [DOI: https://doi.org/10.1038/nature05023]   DOI
12 M. Fiebig, J. Phys. D: Appl. Phys., 38, R123 (2005). [DOI: https://doi.org/10.1088/0022-3727/38/8/R01]   DOI
13 C. Tang, C. Lu, H. Gao, and G. Fu, Appl. Phys. Lett., 111, 173504 (2017). [DOI: https://doi.org/10.1063/1.4990576]   DOI
14 S. He, G. Liu, J. Xu, J. Yang, Y. Chen, S. Kang, S. Yan, and L. Mei, Mater. Lett., 89, 159 (2012). [DOI: https://doi.org/10.1016/j.matlet.2012.08.096]   DOI
15 S. K. Mandal, G. Sreenivasulu, V. M. Petrov, and G. Srinivasan, Appl. Phys. Lett., 96, 192502 (2010). [DOI: https://doi.org/10.1063/1.3428774]   DOI
16 T. Li, D. Ma, K. Li, and Z. Hu, J. Alloys Compd., 747, 558 (2018). [DOI: https://doi.org/10.1016/j.jallcom.2018.03.045]   DOI
17 H. J. Lee, S. Y. Jeong, C. R. Cho, and C. H. Park, Appl. Phys. Lett., 81, 4020 (2002). [DOI: https://doi.org/10.1063/1.1517405]   DOI
18 S. K. Gore, S. S. Jadhav, V. V. Jadhav, S. M. Patange, M. Naushad, R. S. Mane, and K. H. Kim, Sci. Rep., 7, 2524 (2017). [DOI: https://doi.org/10.1038/s41598-017-02784-z]   DOI
19 A. Hassadee, T. Jutarosaga, and W. Onreabroy, Procedia Eng., 32, 597 (2012). [DOI: https://doi.org/10.1016/j.proeng.2012.01.1314]   DOI
20 S. Anjum, R. Khurram, F. Bashir, and H. Nazli, Mater. Today: Proc., 2, 5515 (2015). [DOI: https://doi.org/10.1016/j.matpr.2015.11.079]   DOI
21 M. Tachiki, Prog. Theor. Phys., 23, 1055 (1960). [DOI: https://doi.org/10.1143/PTP.23.1055]   DOI
22 E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knochel, E. Quandt, and D. Meyners, Nat. Mater., 11, 523 (2012). [DOI: https://doi.org/10.1038/nmat3306]   DOI