Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.3.137

Electrical Transport Properties and Magnetoresistance of (1-x)La0.7Sr0.3MnO3/xZnFe2O4 Composites  

Seo, Yong-Jun (School of Nano & Advanced Materials Engineering, Changwon National University)
Kim, Geun-Woo (School of Nano & Advanced Materials Engineering, Changwon National University)
Sung, Chang-Hoon (School of Nano & Advanced Materials Engineering, Changwon National University)
Lee, Chan-Gyu (School of Nano & Advanced Materials Engineering, Changwon National University)
Koo, Bon-Heun (School of Nano & Advanced Materials Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.20, no.3, 2010 , pp. 137-141 More about this Journal
Abstract
The $(1-x)La_{0.7}Sr_{0.3}MnO_3(LSMO)/xZnFe_2O_4$(ZFO) (x = 0, 0.01, 0.03, 0.06 and 0.09) composites were prepared by a conventional solid-state reaction method. We investigated the structural properties, magnetic properties and electrical transport properties of (1-x)LSMO/xZFO composites using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-cooled dc magnetization and magnetoresistance (MR) measurements. The XRD and SEM results indicate that LSMO and ZFO coexist in the composites and the ZFO mostly segregates at the grain boundaries of LSMO, which agreed well with the results of the magnetic measurements. The resistivity of the samples increased by the increase of the ZFO doping level. A clear metal-to-insulator (M-I) transition was observed at 360K in pure LSMO. The introduction of ZFO further downshifted the transition temperature (350K-160K) while the transition disappeared in the sample (x = 0.09) and it presented insulating/semiconducting behavior in the measured temperature range (100K to 400K). The MR was measured in the presence of the 10kOe field. Compared with pure LSMO, the enhancement of low-field magnetoresistance (LFMR) was observed in the composites. It was clearly observed that the magnetoresistance effect of x = 0.03 was enhanced at room temperature range. These phenomena can be explained using the double-exchange (DE) mechanism, the grain boundary effect and the intrinsic transport properties together.
Keywords
$(1-x)La_{0.7}Sr_{0.3}MnO_3/xZnFe_2O_4$ (LSMO/ZFO); Low field magnetoresistance (LFMR); Curie temperature ($T_c$); $T_{MI}$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 D. K. Petrov, L. Krusin-Elbaum, J. Z. Sun, C. Field and P. R. Duncombe, Appl. Phys. Lett., 75, 995 (1999).   DOI
2 G. C. Xiong, Q. Li, H. L. Ju, R. L. Greene and T. Venkatesan, Appl. Phys. Lett., 66, 1689 (1995).   DOI   ScienceOn
3 X. W. Li, A. Gupta, G. Xiao and G. Q. Gong, Appl. Phys. Lett., 71, 1124 (1997).   DOI   ScienceOn
4 H. Y. Hwang, S.W. Cheong, N. P. Ong and B. Batlogg, Phys. Rev. Lett., 77, 2041 (1996).   DOI   ScienceOn
5 R. Mahesh, R. Mahendiran, A. K. Raychaudhuri and C. N. R. Rao, Appl. Phys. Lett., 68, 2291 (1996).   DOI
6 M. J. Casanove, C. Roucau, P. Baules, J. Majimel, J. C. Ousset, D. Magnoux and J. F. Bobo, Appl. Surf. Sci., 188, 19 (2002).   DOI   ScienceOn
7 G. B. Jeon, B. H. Koo and C. G. Lee, Kor. J. Mater. Res., 16, 44 (2006).   DOI   ScienceOn
8 L. Balcells, A. E. Carrillo, B. Martínez and J. Fontcuberta, Appl. Phys. Lett., 74, 4014 (1999).   DOI
9 C. H. Yan, Z. G. Xu, T. Zhu, Z. M. Wang, F. X. Cheng, Y. H. Huang and C. S. Liao, J. Appl. Phys., 87, 5588 (2000).   DOI   ScienceOn
10 Y. H. Huang, X. Chen, Z. M. Wang, C. S. Liao, C. H. Yan, H. W. Zhao and B. G. Shen, J. Appl. Phys., 91, 7733 (2002).   DOI   ScienceOn
11 Y. H. Huang, S. Wang, F. Luo, S. Jiang and C. H. Yan, Chem. Phys. Lett., 362, 114 (2002).   DOI   ScienceOn
12 Z. H. Zhou, J. M. Xue, H. S. O. Chan and J. Wang, J. Appl. Phys., 90, 4169 (2001).   DOI   ScienceOn
13 X. Bo, G. Li, X. Q. Qiu, Y. F. Xue and L. Li, J. Solid State Chem., 3, 1038 (2007).
14 J. A. Toledo-Antonio, N. Nava, M. Martinez and X. Bokhimi, Appl. Catal., A234, 137 (2002).
15 G. F. Goya, H. R. Rechenberg, M. Chen and W. B. Yelon, J. Appl. Phys., 87, 8005 (2000).   DOI   ScienceOn
16 J. F. Hochepied, P. Bonville and M. P. Pileni, J. Phys. Chem., B104, 905 (2000).
17 J. F. Hochepied and M. P. Pileni, J. Appl. Phys., 87, 2472 (2000).   DOI   ScienceOn
18 C. H. Yan, Y. H. Huang, X. Chen, C. S. Liao, Z. M. Wang, J. Phys.: Condens. Matter., 14, 9607 (2002).   DOI   ScienceOn
19 Q. Huang, J. Li, X. J. Huang, X. S. Gao and C. K. Ong, J. Appl. Phys., 90, 2924 (2001).   DOI   ScienceOn
20 A. Gaur, G. D. Varma, J. Alloy. Comp., 453, 423 (2008).   DOI   ScienceOn
21 S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, Science, 264, 413 (1994).   DOI   ScienceOn
22 S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh and L. H. Chen, Science, 264, 413 (1994).   DOI   ScienceOn
23 M. Rubinstein, J. Appl. Phys., 87, 5019 (2000).   DOI   ScienceOn
24 Z. M. Tian, S. L. Yuan, Y. Q. Wang, L. Liu, S. Y. Yin, P. Li, K. L. Liu, J. H. He and J. Q. Li, Mater. Sci. Eng. B, 150, 50 (2008).   DOI   ScienceOn
25 S. Gupta, R. Ranjit, C. Mitra, P. Raychaudhuri and R. Pinto, Appl. Phys. Lett., 78, 362 (2001).   DOI   ScienceOn