• Title/Summary/Keyword: magnetic cluster

Search Result 101, Processing Time 0.02 seconds

A BAYESIAN VIEW ON FARADAY ROTATION MAPS - SEEING THE MAGNETIC POWER SPECTRUM IN CLUSTERS OF GALAXIES

  • VOGT CORINA;ENBLIN TORSTEN A.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.349-353
    • /
    • 2004
  • Magnetic fields are an important ingredient of galaxy clusters and are indirectly observed on cluster scales as radio haloes and radio relics. One promising method to shed light on the properties of cluster wide magnetic fields is the analysis of Faraday rotation maps of extended extragalactic radio sources. We developed a Fourier analysis for such Faraday rotation maps in order to determine the magnetic power spectra of cluster fields. In an advanced step, here we apply a Bayesian maximum likelihood method to the RM map of the north lobe of Hydra A on the basis of our Fourier analysis and derive the power spectrum of the cluster magnetic field. For Hydra A, we measure a spectral index of -5/3 over at least one order of magnitude implying Kolmogorov type turbulence. We find a dominant scale of about 3 kpc on which the magnetic power is concentrated, since the magnetic autocorrelation length is ${\lambda}_B = 3 {\pm} 0.5\;kpc$. Furthermore, we investigate the influences of the assumption about the sampling volume (described by a window function) on the magnetic power spectrum. The central magnetic field strength was determined to be ${\~}7{\pm}2{\mu}G$ for the most likely geometries.

The evolution of Magnetic fields in IntraClusterMedium

  • Park, Kiwan;Ryu, Dongsu;Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2015
  • IntraCluster Medium (ICM) located at the galaxy cluster is in the state of very hot, tenuous, magnetized, and highly ionized X-ray emitting plasmas. High temperature and low density make ICM very viscous and conductive. In addition to the high conductivity, fluctuating random plasma motions in ICM, occurring at all evolution stages, generate and amplify the magnetic fields in such viscous ionized gas. The amplified magnetic fields in reverse drive and constrain the plasma motions beyond the viscous scale through the magnetic tension. Moreover, without the influence of resistivity viscous damping effect gets balanced only with the magnetic tension in the extended viscous scale leading to peculiar ICM energy spectra. This overall collisionless magnetohydrodynamic (MHD) turbulence in ICM was simulated using a hyper diffusivity method. The results show the plasma motions and frozen magnetic fields have power law of $E_V^k{\sim}k^{-3}$, $E_M^k{\sim}k^{-1}$. To explain these abnormal power spectra we set up two simultaneous differential equations for the kinetic and magnetic energy using an Eddy Damped Quasi Normal Markovianized (EDQNM) approximation. The solutions and dimensions of leading terms in the coupled equations derive the power spectra and tell us how the spectra are formed. We also derived the same results with a more intuitive balance relation and stationary energy transport rate.

  • PDF

Structural flexibility of Escherichia coli IscU, the iron-sulfur cluster scaffold protein

  • Kim, Bokyung;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.86-90
    • /
    • 2020
  • Iron-sulfur (Fe-S) clusters are one of the most ancient yet essential cofactors mediating various essential biological processes. In prokaryotes, Fe-S clusters are generated via several distinctive biogenesis mechanisms, among which the ISC (Iron-Sulfur Cluster) mechanism plays a house-keeping role to satisfy cellular needs for Fe-S clusters. The Escherichia coli ISC mechanism is maintained by several essential protein factors, whose structural characterization has been of great interest to reveal mechanistic details of the Fe-S cluster biogenesis mechanisms. In particular, nuclear magnetic resonance (NMR) spectroscopic approaches have contributed much to elucidate dynamic features not only in the structural states of the protein components but also in the interaction between them. The present minireview discusses recent advances in elucidating structural features of IscU, the key player in the E. coli ISC mechanism. IscU accommodates exceptional structural flexibility for its versatile activities, for which NMR spectroscopy was particularly successful. We expect that understanding to the structural diversity of IscU provides critical insight to appreciate functional versatility of the Fe-S cluster biogenesis mechanism.

The Magnetic Structure and Magnetic Anisotropy Energy Calculations for Transition Metal Mono-oxide Clusters (전이금속산화물 클러스터의 자기구조 및 자기이방성에너지 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • We have studied magnetic structure and magnetic anisotropy energy of cubic transition metal mono-oxide cluster FeO and MnO using OpenMX method based on density functional method. The calculation results show that the antiferromagnetic spin arrangement has the lowest energy for FeO and MnO due to the superexchange interactions. The magnetic anisotropy is only found for antiferromagnetically ordered FeO cluster, since occupied electron of 3d down-spin level induces the spin-orbit couplings with <111> directed angular momentum.

Radio relics in merging clusters of galaxies

  • Roh, Soonyoung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2019
  • Clusters of galaxies shape up through a series of hierarchical mergers. It is believed that major mergers lead to cluster-wide shock waves, which are manifested as radio relics. The 1RXS J0603.0+4213 and CIZA J2242.8+5301 clusters, for instance, contain Mpc-size giant radio relics in the outskirts. Synchrotron emission from these radio relics reveals the presence of relativistic electrons and the magnetic fields of a few ${\mu}G$ strength. The presence of such magnetic fields in the ICM has been explained by the so-called small-scale turbulent dynamo. To get quantitative measures for magnetic fields in clusters of galaxies, we investigate the development of turbulence and the follow-up amplification of magnetic fields through three-dimensional numerical magnetohydrodynamical (MHD) simulations. The turbulence is induced in highly stratified cluster media, and driven sporadically by major mergers. We here present the results, aiming to answer whether the turbulence dynamo scenario can explain the observed strength and scale of magnetic fields in clusters. Also, we discuss whether the observed properties of giant radio relics can be reproduced in our simulations.

  • PDF

Backbone NMR chemical shift assignment for the substrate binding domain of Escherichia coli HscA

  • Jin Hae Kim
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.28 no.2
    • /
    • pp.6-9
    • /
    • 2024
  • HscA is a Hsp70-type chaperone protein that plays an essential role to mediate the iron-sulfur (Fe-S) cluster biogenesis mechanism in Escherichia coli. Like other Hsp70 chaperones, HscA is composed of two domains: the nucleotide binding domain (NBD), which can hydrolyze ATP and use its chemical energy to facilitate the Fe-S cluster transfer process, and the substrate binding domain (SBD), which directly interacts with the substrate, IscU, the scaffold protein of an Fe-S cluster. In the present work, we prepared the isolated SBD construct of HscA (HscA(SBD)) and conducted the solution-state nuclear magnetic resonance (NMR) experiments to have its backbone chemical shift assignment information. Due to low spectral quality of HscA(SBD), we obtained all the NMR data from the sample containing the peptide LPPVKIHC, the HscA-interaction motif of IscU, from which the chemical shift assignment could be done successfully. We expect that this information provides an important basis to execute detailed structural characterization of HscA and appreciate its interaction with IscU.

FARADAY ROTATION OBSERVATIONS OF MAGNETIC FIELDS IN GALAXY CLUSTERS

  • CLARKE TRACY E.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.337-342
    • /
    • 2004
  • The presence of magnetic fields in the intracluster medium in clusters of galaxies has been revealed through several different observational techniques. These fields may be dynamically important in clusters as they will provide additional pressure support to the intracluster medium as well as inhibit transport mechanisms such as thermal conduction. Here, we review the current observational state of Faraday rotation measure studies of the cluster fields. The fields are generally found to be a few to 10 $\mu$G in non-cooling core clusters and ordered on scales of 10 - 20 kpc. Studies of sources at large impact parameters show that the magnetic fields extend from cluster cores to radii of at least 500 kpc. In central regions of cooling core systems the field strengths are often somewhat higher (10 - 40 $\mu$G) and appear to be ordered on smaller scales of a few to 10 kpc. We also review some of the recent work on interpreting Faraday rotation measure observations through theory and numerical simulations. These techniques allow us to build up a much more detailed view of the strength and topology of the fields.

Study on the Distortion of Detecting Signals with the Multi-Defects in Magnetic Flux Leakage System (자기누설탐상시스템에서 밀집된 다수의 결함에 의한 탐상 신호 왜곡에 관한 연구)

  • Seo, Kang;Kim, Dug-Gun;Han, Jea-Man;Park, Gwan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.876-883
    • /
    • 2007
  • The magnetic flux leakage(MFL) type nondestructive testing(NDT) method is widely used to detect corrosion, defects and mechanical deformation of the underground gas pipelines. The object pipeline is magnetically saturated by the magnetic system with permanent magnet and yokes. Hall sensors detect the leakage fields in the region of the defect. The defects are sometimes occurred in group. The accuracy of the detecting signals in this defect cluster become lowered because of the complexity of the defect cluster. In this paper, the effects of the multi -defects are analyzed. The detecting signals are computed by 3-dimensional finite element method and compared with real measurement. The results say that, rather than the size of the defects, the effects of the relative position of the multi-defects are very important on the detecting signals.

The magnetic properties of the systems of the ultra-fine particles

  • Perov, N.S;Sudarikova, N.Yu.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.17-17
    • /
    • 2002
  • The magnetic effects connected to finite-size of the particles become dominant at transition of particles in region several nanometers and less [1]. At reduction of atom numbers in magnetic cluster (tens or hundreds atoms), along the classical features, essential appear the quantum phenomena resulting in spin transformation of magnetic structure, both with reduction of the size and at applying of an external magnetic field. (omitted)

  • PDF