• Title/Summary/Keyword: magnesium powder

Search Result 177, Processing Time 0.02 seconds

Study on Hardness and Corrosion Resistance of Magnesium by Anodizing and Sealing Treatment With Nano-diamond Powder (양극산화와 나노 다이아몬드 분말 봉공처리에 의한 마그네슘의 경도와 부식에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.260-265
    • /
    • 2014
  • In this study, in order to increase surface ability of hardness and corrosion of magnesium alloy, anodizing and sealing with nano-diamond powder was conducted. A porous oxide layer on the magnesium alloy was successfully made at $85^{\circ}C$ through anodizing. It was found to be significantly more difficult to make a porous oxide layer in the magnesium alloy compared to an aluminum alloy. The oxide layer made below $73^{\circ}C$ by anodizing had no porous layer. The electrolyte used in this study is DOW 17 solution. The surface morphology of the magnesium oxide layer was investigated by a scanning electron microscope. The pores made by anodizing were sealed by water and aqueous nano-diamond powder respectively. The hardness and corrosion resistance of the magnesium alloy was increased by the anodizing and sealing treatment with nano-diamond powder.

Densification Behaviour of Magnesium Powders during Cold Isostatic Pressing using the Finite Element Method (유한요소법을 이용한 마그네슘 분말의 냉간정수압 공정시 치밀화 거동 해석)

  • Yoon, Seung-Chae;Kwak, Eun-Jeong;Choi, Won-Hyoung;Kim, Hyoung-Kun;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.362-366
    • /
    • 2007
  • Magnesium and magnesium alloys are promising materials for light weight and high strength applications. In order to obtain homogeneous and high quality products in powder compaction and powder forging processes, it is very important to control density and density distributions in powder compacts. In this study, a model for densification of metallic powder is proposed for pure magnesium. The mode] considers the effect of powder characteristics using a pressure-dependent critical density yield criterion. Also with the new model, it was possible to obtain reasonable physical properties of pure magnesium powder using cold iso-state pressing. The proposed densification model was implemented into the finite element method code. The finite element analysis was applied to simulating die compaction of pure magnesium powders in order to investigate the density and effective strain distributions at room temperature.

Synthesis of Zr-Ti Alloy Powder by Magnesium Reduction (마그네슘환원에 의한 지르코늄-티타늄 합금분말 합성)

  • Lee, Dong-Won;Park, Geun-Tae;Lim, Tae-Soo;Lee, Hye-Moon;Yu, Ji-Hun
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.359-364
    • /
    • 2011
  • Zr-Ti alloy powders were successfully synthesized by magnesium thermal reduction of metal chlorides. The evaporated and mixed gasses of $ZrCl_4+TiCl_4$ were injected to liquid magnesium and the chloride components were reduced by magnesium leading to the formation of $MgCl_2$. The released Zr and Ti atoms were then condensed to particle forms inside the mixture of liquid magnesium and magnesium chloride, which could be dissolved fully in post process by 1~5% HCl solution at room temperature. By the fraction-control of individually injected $ZrCl_4$ and $TiCl_4$ gasses, the final compositions of produced alloy powders were changed in the ranges of Zr-0 wt.%~20 wt.%Ti and their purity and particle size were about 99.4% and the level of several micrometers, respectively.

Analysis of Densification Behavior of Magnesium Powders in Extrusion using the Critical Relative Density Model (임계상대밀도모델을 이용한 마그네슘분말의 압출공정 치밀화 거동)

  • Yoon, Seung-Chae;Chae, Hong-Jun;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.50-55
    • /
    • 2009
  • Numerical simulations of the powder extrusion need an appropriate pressure-dependent constitutive model for densification modeling of the magnesium powders. The present research investigated the effect of representative powder yield function of the critical relative density model. We could obtain reasonable physical properties of pure magnesium powders using cold isostatic pressing. The proposed densification model was implemented into the finite element code. The finite element analysis was applied to simulation of powder extrusion of pure magnesium powder in order to investigate the densification and processing load at room temperature.

Fabrication of Metallic Tantalum Powder by Magnesium-gas Reduction of Tantalum Oxide (탄탈륨 산화물의 마그네슘 가스환원에 의한 탄탈륨 금속분말 제조)

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.390-394
    • /
    • 2018
  • Metallic tantalum powder is manufactured by reducing tantalum oxide ($Ta_2O_5$) with magnesium gas at 1,073-1,223 K in a reactor under argon gas. The high thermodynamic stability of magnesium oxide makes the reduction reaction from tantalum oxide into tantalum powder possible. The microstructure after the reduction reaction has the form of a mixture of tantalum and magnesium oxide, and the latter could be entirely eliminated by dissolving in weak hydrochloric acid. The powder size in SEM microstructure for the tantalum powder increases after acid leaching in the range of 50-300 nm, and its internal crystallite sizes are observed to be 11.5 to 24.7 nm with increasing reduction temperatures. Moreover, the optimized reduction temperature is found to be 1,173 K as the minimum oxygen concentration is approximately 1.3 wt.%.

Refinement Behavior of Magnesium Powder by Attrition Milling Under Different Condition (어트리션 볼밀링 조건 변화에 따른 마그네슘 분말의 미세화 거동)

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Kim, Jung-Han;Kim, Tae-Kyung;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.591-598
    • /
    • 2014
  • In this research, magnesium powder was prepared by gas atomizing. Refinement behaviors of magnesium powder produced under different conditions were investigated using a mechanical milling (attrition milling) process. Analyses were performed to assess the characterization and comparison of milled powder with different steel ball sizes and milling times. The powders were analyzed by field emission scanning electron microscope, apparent density and powder fluidity. The particle morphology of the Mg powders changed from spherical particles of feed metals to irregular oval particles, then plate type particles, with an increasing milling time. Because of the HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, which results in producing plate-type powders. An increase in ball size and the impact energy of the magnesium powder maximizes the effect of refinement. Furthermore, it is possible to improve the apparent density and fluidity according to the smoothness of the surface of the initial powder.

Finite Element Analysis of Densification of Mg Powders during Equal Channel Angular Pressing: Effect of Sheath (유한요소법을 이용한 등통로각압출 공정의 마그네슘 분말 고형화 거동 해석: 피복재 효과)

  • Yoon, Seung-Chae;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.85-90
    • /
    • 2009
  • Magnesium and its alloys are attractive as light weight structural/functional materials for high performance application in automobile and electronics industries due to their superior physical properties. In order to obtain high quality products manufactured by the magnesium powders, it is important to control and understand the densification behavior of the powders. The effect of the sheath surrounding the magnesium powders on the plastic deformation and densification behavior during equal channel angular pressing was investigated in the study by experimental and the finite element methods. A modified version of Lee-Kim's plastic yield criterion, notably known as the critical relative density model, was applied to simulate the densification behavior of magnesium powders. In addition, a new approach that extracts the mechanical characteristics of both the powder and the matrix was developed. The model was implemented into the finite element method, with which powder compaction under equal channel angular pressing was simulated.

Preparation of Ultrafine TiCN Powders by Mg-reduction of Metallic Chlorides (마그네슘의 금속염화물 환원에 의한 초미립 TiCN 분말합성)

  • Lee, Dong-Won;Kim, Jin-Chun;Kim, Yong-Jin;Kim, Byoung-Kee
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.98-103
    • /
    • 2009
  • The ultrafine titanium carbonitride particles ($TiC_{0.7}N_{0.3}$) below 100nm in mean size were successfully synthesized by Mg-thermal reduction process. The nanostructured sub-stoichiometric titanium carbide ($TiC_{0.7}$) particles were produced by the magnesium reduction at 1123K of gaseous $TiC_{l4}+xC_2Cl_4$ and the heat treatments in vacuum were performed for five hours to remove residual magnesium and magnesium chloride mixed with $TiC_{0.7}$. And final $TiC_{0.7}N_{0.3}$ phase was obtained by nitrification under normal $N_2$ gas at 1373K for 2 hrs. The purity of produced $TiC_{0.7}N_{0.3}$ particles was above 99.3% and the oxygen contents below 0.2 wt%. We investigated in particular the effects of the temperatures in vacuum treatment on the particle refinement of final product.

Mechanism and regulation of body malodor generation (2) -Development of a novel deodorant powder and application as an antiperspirant-

  • Miyazaki, M.;Fujihira, K.;Sadaie, M.;Nishikawa, N.;Kon, R.;Sugiyama, K.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.110-116
    • /
    • 2003
  • We have developed a high performance powder, which has a quenching efficacy not only for short-chain fatty acids and amines, but also for vinyl ketones (l-octen-3-one, cis-l,5-octadien-3-one), newly found as other key compounds in axillary malodor. By investigating various powders known to have a quenching efficacy, we finally developed a highly porous silica bead containing magnesium oxide. We found that the superior deodorant effect performed by this powder was the result of multiple effects due to both an excellent physical adsorption capability from its high porosity and a specific adsorption of vinyl ketones by magnesium in the powder. An antiperspirant formulation containing both this powder and a Morus alba extract showed good efficacy as a deodorant.

  • PDF

Preparation of Ultrafine C/N Controled TiCxNy Powders by Magnesium Reduction (마그네슘환원에 의한 C/N 조성제어 초미립 TiCxNy 분말 합성)

  • Lee, Dong-Won;Kim, Byoung-Kee;Yun, Jung-Yeul;Yu, Ji-Hoon;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2010
  • The ultrafine titanium carbonitride ($TiC_xN_y$) particles below 100 nm in mean size, including various carbon and nitrogen contents (x=0.55~0.9, y=0.1~0.5), were successfully synthesized by new Mg-thermal reduction process. Nanostructured sub-stoichiometric titanium carbide ($TiC_x$) particles were initially produced by the magnesium reduction of gaseous $TiCl_4+x/2C_2Cl_4$ at $890^{\circ}C$ and post heat treatments in vacuum were performed for 2 hrs to remove residual magnesium and magnesium chloride mixed with $TiC_x$. Finally, well C/N-controled $TiC_xN_y$ phases were successfully produced by nitrification heat treatment under normal $N_2$ gas atmosphere at $1150^{\circ}C$ for 2 hrs. The values of purity, mean particle size and oxygen content of produced particles were about 99.3%, 100 nm and 0.2 wt.%, respectively.