DOI QR코드

DOI QR Code

Analysis of Densification Behavior of Magnesium Powders in Extrusion using the Critical Relative Density Model

임계상대밀도모델을 이용한 마그네슘분말의 압출공정 치밀화 거동

  • Yoon, Seung-Chae (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Chae, Hong-Jun (Department of Echo-Materials and Processing, Korea Institute of Industrial Technology(KITECH)) ;
  • Kim, Taek-Soo (Department of Echo-Materials and Processing, Korea Institute of Industrial Technology(KITECH)) ;
  • Kim, Hyoung-Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • 윤승채 (포항공과대학교 항공재료연구소) ;
  • 채홍준 (한국생산기술연구원) ;
  • 김택수 (한국생산기술연구원) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Published : 2009.02.28

Abstract

Numerical simulations of the powder extrusion need an appropriate pressure-dependent constitutive model for densification modeling of the magnesium powders. The present research investigated the effect of representative powder yield function of the critical relative density model. We could obtain reasonable physical properties of pure magnesium powders using cold isostatic pressing. The proposed densification model was implemented into the finite element code. The finite element analysis was applied to simulation of powder extrusion of pure magnesium powder in order to investigate the densification and processing load at room temperature.

Keywords

References

  1. J. R. Groza and R. J. Dowding: Nanostructured Mater., 7 (1996) 749. https://doi.org/10.1016/S0965-9773(96)00046-3
  2. P. L. Chen and I. W. Chen: J. Am. Ceram. Soc., 79 (1996) 3129. https://doi.org/10.1111/j.1151-2916.1996.tb08087.x
  3. H. S. Kim, M. H. Seo, W. S. Ryu, S. C. Yoon and C. K. Rhee: J. Metastable Nanocryst. Mater., 15-16 (2003) 235. https://doi.org/10.4028/www.scientific.net/JMNM.15-16.235
  4. S. C. Yoon, S-J. Hong, S. I. Shong and H. S. Kim: Mater. Sci. Eng. A, 449-451 (2007) 290. https://doi.org/10.1016/j.msea.2006.02.405
  5. W. J. Kim and Y. K. Sa: Scripta Mater., 54 (2006) 1391. https://doi.org/10.1016/j.scriptamat.2005.11.066
  6. B. H. Lee, K. S. Shin and C. S. Lee: Mater. Sci Forum, 475-479 (2005) 2927 https://doi.org/10.4028/www.scientific.net/MSF.475-479.2927
  7. S. Y. Chang, S. W. Lee, K. M. Kang, S. Kamdo and Y. Kojima: Mater. Trans., 45 (2004) 488. https://doi.org/10.2320/matertrans.45.488
  8. T. Mukai, M. Yamanoi, H. Watnabe and K. Higashi: Scripta Mater., 45 (2001) 89. https://doi.org/10.1016/S1359-6462(01)00996-4
  9. M. Nishida, Y. Kawamura and T. Yamamoto: Mater. Sci. Eng. A., 375 (2004) 1217. https://doi.org/10.1016/j.msea.2003.10.145
  10. H. S. Kim and D. Y. Lee: J. Kor. Inst. Met. Metal., 30 (1992) 37 (Korean).
  11. H. S. Kim: J. Kor. Inst. Met. Metal., 38 (2000) 817 (Korean).
  12. S. C. Yoon, H. S. Kim and C. K. Rhee: J. Kor. Powder Metall. Inst., 11 (2004) 341 (Korean). https://doi.org/10.4150/KPMI.2004.11.4.341
  13. S. C. Yoon, E. J. Kwak, W. H. Choi, H. K. Kim, T. S. Kim and H. S. Kim: J. Kor. Powder Metall. Inst., 14 (2007) 362 (Korean). https://doi.org/10.4150/KPMI.2007.14.6.362
  14. S. C. Yoon, E. J. Kwak, T. S. Kim, B. S. Chun and H. S. Kim: Mater. Trans., 49 (2008) 967. https://doi.org/10.2320/matertrans.MC200724
  15. S. C. Yoon and H. S. Kim: Mater. Sci. Forum, 503-504 (2006) 221. https://doi.org/10.4028/www.scientific.net/MSF.503-504.221
  16. C. H. Bok, J. H. Yoo, S. C. Yoon, T. S. Kim, B. S. Chun and H. S. Kim: J. Kor. Powder Metall. Inst., 15 (2008) 365 (Korean). https://doi.org/10.4150/KPMI.2008.15.5.365
  17. H. J. Chae: Master's Thesis, Hanyang University, (2008) (Korean).
  18. S. C. Yoon, P. Quang, S. C. Chun, H. R. Lee and H. S. Kim: J. Kor. Powder Metall. Inst., 13 (2006) 415 (Korean). https://doi.org/10.4150/KPMI.2006.13.6.415