Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.11.591

Refinement Behavior of Magnesium Powder by Attrition Milling Under Different Condition  

Yoo, Hyo-Sang (Korea Institute of Industrial Technology, Automotive Components & Materials R&BD Group)
Kim, Yong-Ho (Korea Institute of Industrial Technology, Automotive Components & Materials R&BD Group)
Kim, Jung-Han (Korea Institute of Industrial Technology, Automotive Components & Materials R&BD Group)
Kim, Tae-Kyung (Jeonbuk Institude of Automotive Technology)
Son, Hyeon-Taek (Korea Institute of Industrial Technology, Automotive Components & Materials R&BD Group)
Lee, Seong-Hee (Mokpo National University)
Publication Information
Korean Journal of Materials Research / v.24, no.11, 2014 , pp. 591-598 More about this Journal
Abstract
In this research, magnesium powder was prepared by gas atomizing. Refinement behaviors of magnesium powder produced under different conditions were investigated using a mechanical milling (attrition milling) process. Analyses were performed to assess the characterization and comparison of milled powder with different steel ball sizes and milling times. The powders were analyzed by field emission scanning electron microscope, apparent density and powder fluidity. The particle morphology of the Mg powders changed from spherical particles of feed metals to irregular oval particles, then plate type particles, with an increasing milling time. Because of the HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, which results in producing plate-type powders. An increase in ball size and the impact energy of the magnesium powder maximizes the effect of refinement. Furthermore, it is possible to improve the apparent density and fluidity according to the smoothness of the surface of the initial powder.
Keywords
Mg powder; ball milling; refinement;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. H. Hausner and M. K. Mal: Hand book of Powder Metallurgy, second edition, Chemical Publishing, NewYork, (1982).
2 E. Yukatake, J. Kaneko and M. Sugamata, Meter. Trans., 44, 452 (2003).   DOI   ScienceOn
3 H. Tonda and S. Ando, Metal. Mater. Trans. A., 33, 831 (2002).
4 G. Y. Yua, Z. L. Liu, Q. D. Wang, W. J. Ding, Mater. Lett., 56, 53 (2002).   DOI   ScienceOn
5 Lihua Liao, Xiuqing Zhang, Haowei Wang, Mat. Lett., 59, 2702 (2005).   DOI   ScienceOn
6 Ya Zhang, Xiaoqin Zeng, Liufa Liu, Chen Lu, Hantao Zhou, Qiang Li, Yanping Zhu., Mater. Sci. Eng. A., 373, 320 (2004).   DOI   ScienceOn
7 Ifeanyi A. Anyanwu, Yasuhiro Gokan, Atsuya Suzuki, Shigeharu Kamado, Yo Kojima, Suguru Takeda, Taketoshi Ishida, Mater. Sci. Eng. A., 380, 93 (2004).   DOI   ScienceOn
8 C. Chen, G. Zhang, W. Wang and Z. Wang: Mater. Sci. Eng. A 272, 363 (1999).   DOI   ScienceOn
9 Bufferd, A. S., and P. U. Gummeson. "Application outlook for superalloy PM parts(Powder metallurgy superalloy parts, discussing production methods and mechanical properties comparison with conventional process products)." Metal Progress 99, 68 (1971).
10 J. G. Jang, H. Y. Ra, E. P. Yoon and H. C. Jeong : J. of the Korean Inst. Of Metals, 28(1), 16 (1990).
11 G. G. Lee, Ryuzo Watanabe, I. P. Park and H. Y. Jeoung: J. Korean. J. Mat. Mater. 33, 888 (1995).
12 P. S. GiLman and W. D. Nix, Metal. Trans. A., 5, 813 (1981).
13 S. Bouaricha, J. P. Dodelet, D. Guay, J. Huot, S. Boily and R. Schulz: J. Alloys Compd., 297, 282 (2000).   DOI   ScienceOn