• 제목/요약/키워드: macro mode

검색결과 87건 처리시간 0.041초

장봉도 갯벌을 이용하는 대형 갑각류 군집의 계절 변화 (Temporal Variation of the Macro-crustacean Assemblages on Jangbong Tidal Flat, Incheon, Korea)

  • 서인수;홍재상
    • 한국수산과학회지
    • /
    • 제43권5호
    • /
    • pp.521-531
    • /
    • 2010
  • This study examined the community structure and temporal variation of the macro-crustaceans on Jangbong tidal flat, Incheon, Korea. Macro-crustaceans on this tidal flat were collected using a modified otter trawl from November 1999 to January 2001. The macro-crustaceans comprised 32 species, 7,741 individuals, and 29,211.3 gWWt during the study period. The Jangbong tidal flat was dominated numerically by three shrimp (Palaemon carinicauda, Crangon affinis, and Metapenaeus joyneri) and two portunid crabs (Charybdis japonica and Portunus trituberculatus). The macro-crustacean assemblages were divided into two different season and species groups based on the q-mode and r-mode clustering methods. In terms of q-mode, they consisted of a winter species group from December through April and a summer species group from May through November. The r-mode analysis showed that the species group visiting the tidal flat in winter was dominated numerically by palaemonid and crangonid shrimps, while a species group characterized by an abundance of portunid crabs and penaeid shrimps was more frequent in spring, summer, and autumn. In conclusion, our study revealed distinct temporal variation in the tidal flat use by macro-crustaceans around Jangbong Island, Incheon, Korea.

Toggling MRAM cell을 위한 CMOS Macro Model과 Core Architecture 설계 (CMOS Macro Model for Toggling MRAM Cell and Design of Core Architecture)

  • 고순복;송하선;김범수;김대정
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.525-526
    • /
    • 2006
  • A macro model for Savtchenko switching mode MRAM (toggling MRAM) cells which can be utilized to develop the core architecture and the peripheral circuitry is proposed, and a writing scheme suitable to the toggling characteristic is developed. The sensing and writing operations of the toggling MRAM adopting the macro model are verified by Spectre simulations.

  • PDF

Damage detection for beam structures based on local flexibility method and macro-strain measurement

  • Hsu, Ting Yu;Liao, Wen I;Hsiao, Shen Yau
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.393-402
    • /
    • 2017
  • Many vibration-based global damage detection methods attempt to extract modal parameters from vibration signals as the main structural features to detect damage. The local flexibility method is one promising method that requires only the first few fundamental modes to detect not only the location but also the extent of damage. Generally, the mode shapes in the lateral degree of freedom are extracted from lateral vibration signals and then used to detect damage for a beam structure. In this study, a new approach which employs the mode shapes in the rotary degree of freedom obtained from the macro-strain vibration signals to detect damage of a beam structure is proposed. In order to facilitate the application of mode shapes in the rotary degree of freedom for beam structures, the local flexibility method is modified and utilized. The proposed rotary approach is verified by numerical and experimental studies of simply supported beams. The results illustrate potential feasibility of the proposed new idea. Compared to the method that uses lateral measurements, the proposed rotary approach seems more robust to noise in the numerical cases considered. The sensor configuration could also be more flexible and customized for a beam structure. Primarily, the proposed approach seems more sensitive to damage when the damage is close to the supports of simply supported beams.

Enhanced macro element for nonlinear analysis of masonry infilled RC frame structures

  • Mebarek Khelfi;Fouad Kehila
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.177-186
    • /
    • 2023
  • Reinforced concrete frames with a masonry infill panel is a structural typology frequently used worldwide. In seismic cases, the interaction between the masonry infill and the RC frames constitutes one of the most complex subjects in earthquake engineering. In this work, an enhancement of an existing numerical model is proposed to improve the estimation of lateral strength and stiffness of masonry-infilled frame structures and predict their probable failure modes. The proposed improvement is based on attributing corrective coefficients to the shear strength of each diagonal shear spring of the macro element, which simulates the masonry infill. The improved numerical model is validated by comparing the results with those of the original numerical model and with experimental results available in the literature. The enhanced macro element model can be used as a powerful, accessible tool for assessing the capacity and stiffness of masonry-infilled frame structures and predicting their probable failure modes.

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

MACRO-SHEAR BOND STRENGTH AND MICRO-SHEAR BOND STRENGTH OF CEROMER BONDED TO METAL ALLOY AND FIBER REINFORCED COMPOSITE

  • Park Hyung-Yoon;Cho Lee-Ra;Cho Kyung-Mo;Park Chan-Jin
    • 대한치과보철학회지
    • /
    • 제42권6호
    • /
    • pp.654-663
    • /
    • 2004
  • Statement of problem. According to the fracture pattern in several reports, fractures most frequently occur in the interface between the ceromer and the substructure. Purpose. The aim of this in vitro study was to compare the macro shear bond strength and microshear bond strength of a ceromer bonded to a fiber reinforced composite (FRC) as well as metal alloys. Material and methods. Ten of the following substructures, type II gold alloy, Co-Cr alloy, Ni-Cr alloy, and FRC (Vectris) substructures with a 12 mm in diameter, were imbedded in acrylic resin and ground with 400, and 1, 000-grit sandpaper. The metal primer and wetting agent were applied to the sandblasted bonding area of the metal specimens and the FRC specimens, respectively. The ceromer was placed onto a 6 mm diameter and 3 mm height mold in the macro-shear test and 1 mm diameter and 2 mm height mold in the micro-shear test, and then polymerized. The macro- and micro-shear bond strength were measured using a universal testing machine and a micro-shear tester, respectively. The macro- and micro-shear strength were analyzed with ANOVA and a post-hoc Scheffe adjustment ($\alpha$ = .05). The fracture surfaces of the crowns were then examined by scanning electron microscopy to determine the mode of failure. Chi-square test was used to identify the differences in the failure mode. Results. The macro-shear strength and the micro-shear strength differed significantly with the types of substructure (P<.001). Although the ceromer/FRC group showed the highest macroand micro-shear strength, the micro-shear strength was not significantly different from that of the base metal alloy groups. The base metal alloy substructure groups showed the lowest mean macro-shear strength. However, the gold alloy substructure group exhibited the least micro-shear strength. The micro-shear strength was higher than the macro-shear strength excluding the gold alloy substructure group. Adhesive failure was most frequent type of fracture in the ceromer specimens bonded to the gold alloys. Cohesive failure at the ceromer layer was more common in the base metals and FRC substructures. Conclusion. The Vectris substructure had higher shear strength than the other substructures. Although the shear strength of the ceromer bonded to the base metals was lower than that of the gold alloy, the micro-shear strength of the base metals were superior to that of the gold alloy.

수중충격하중을 받는 선체구조의 충격 및 파손 해석 (The Shock and Fracture Analysis of Ship Structure Subject to Underwater Shock Loading)

  • 정기태;김경수;김영복
    • 대한조선학회논문집
    • /
    • 제32권1호
    • /
    • pp.118-131
    • /
    • 1995
  • 수중폭발을 받게 되는 해군 함정이나 충격하중을 받게 되는 초고속선의 구조에 대한 내충격 파손해석을 거시해석(global or macro analysis)과 미시해석(fine or micro analysis)의 두 단계로 나누어 수행하였다. 거시해석은 이중근사기법(DAA : Doubly Asymptotic Approximation)을 이용하였다. 심한 충격하중을 받는 구조는 주로 세 가지 파괴모드를 나타내는데 이는 충격후기에 주로 나타나는 동소성좌굴(Dynamic plastic buckling)에 기인하는 소성대변형과 충격초기에 주로 나타나는 인장 파괴(Tensile tearing failure)와 횡전단파괴(Transverse shear failure)가 있다. 본 논문의 미시해석에서는 잠수구조의 종보강재에 충격압력이 가해진 경우에 대하여 응력파(stress wave)의 파급과 이 응력파와 균열과의 상호작용에 의한 동적응력강도계수 $K_I(t)$의 계산함으로써 인장 파괴모드(Tensile tearing failure mode)해석을 수행하였다. 특히, 동적응력강도계수 $K_I(t)$의 계산에 있어서 실험적 방법으로 널리 사용되는 shadow optical method of caustic로부터 개발된 numerical caustic method를 사용하였다. 본 논문의 충격파손해석 수치 예로서 해석모델을 완전잠수주상체로 잡고 거시해석을 수행한 후 이로부터 구한 충격압력을 입력자료로 하여 종보강재에 대하여 미시해석을 수행하였다.

  • PDF

Stress resultant model for ultimate load design of reinforced-concrete frames: combined axial force and bending moment

  • Pham, Ba-Hung;Davenne, Luc;Brancherie, Delphine;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • 제7권4호
    • /
    • pp.303-315
    • /
    • 2010
  • In this paper, we present a new finite Timoshenko beam element with a model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and or the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. The micro-scale is described by using the multi-fiber elements with embedded strain discontinuities in mode 1, which would typically be triggered by bending failure mode. A special attention is paid to the influence of the axial force on the bending moment - rotation response, especially for the columns behavior computation.

주파수 특성의 제약 조건들을 이용한 H.264/AVC를 위한 고속 화면 내 모드 선택 방법 (Fast Intra Mode Selection Algorithm for H.264/AVC Using Constraints of Frequency Characteristics)

  • 진순종;박상준;정제창
    • 한국통신학회논문지
    • /
    • 제33권4C호
    • /
    • pp.321-329
    • /
    • 2008
  • H.264/AVC 비디오 부호화 표준은 MPEG-2, H.263 또는 MPEG-4와 같은 기존의 비디오 부호화 표준과 비교하여 상당한 부호화 효율의 향상을 제공한다. 부호화 효율의 향상을 수행하기 위해서 H.264/AVC는 매크로블록 단위로 최적의 움직임 벡터, 참조 화면, 매크로블록 모드를 선택하는데 있어서 율-왜곡 최적화 (Rate-distortion optimization) 기법을 이용한다. 결과적으로 높은 부호화 효율을 제공함과 동시에 복잡도 역시 상당히 증가하였다. 본 논문에서는 화면 내 부호화 모드들에서 나타나는 주파수 특성의 제약 조건들을 이용하여 고속 화면 내 모드 선택 방법을 제안한다. 먼저 영상의 주파수 해석을 통해 H.264/AVC의 화면 내 모드 별 특성을 살펴본다. 다음 제안하는 주파수 에러 비용 (Frequency Error Cost, FEC)을 계산하여 최소 비용을 가지는 모드와 그 주변 모드 2개만을 후보 모드로 선택하고 후보 모드의 율-왜곡 비용만을 계산하여 최적의 화면 내 모드를 결정하여 복잡도를 감소시킨다. 실험 결과는 제안하는 방법이 H.264/AVC와 비교하여 비슷한 율-왜곡 성능을 보이면서 복잡도를 상당히 감소시킴을 보여준다.