• Title/Summary/Keyword: m_1)-system$

Search Result 13,947, Processing Time 0.049 seconds

Comparative Evaluation of Three Culture Methods for the Isolation of Mycobacteria from Clinical Samples

  • Sorlozano, Antonio;Soria, Isabel;Roman, Juan;Huertas, Pilar;Soto, Maria Jose;Piedrola, Gonzalo;Gutierrez, Jose
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1259-1264
    • /
    • 2009
  • We assessed the capacity of two liquid-medium culture methods with automated incubation and reading systems (MB/BacT ALERT 3D System and BACTEC MGIT 960 System) and one solid-medium culture method ($L\ddot{o}wenstein$-Jensen) to detect mycobacteria in different types of clinical samples. Out of 1,770 cultured clinical samples (1,519 of respiratory origin and 251 of non respiratory origin), mycobacteria were isolated in 156 samples (135 M. tuberculosis complex, 8 M. chelonae, 6 M. kansasii, 4 M. fortuitum, 2 M. gordonae, and 1 M. marinum) by at least one of the methods used. The BACTEC MGIT 960 System proved to be the most sensitive method (86.5%), especially in the detection of M. tuberculosis complex (89.1%). However, $L\ddot{o}wenstein$-Jensen culture was the most sensitive (76.2%) to detect nontuberculous mycobacteria. The BACTEC MGIT 960 System showed the lowest mean detection time for mycobacterial growth (15.3 days), significantly shorter than the other two methods. Highest sensitivity (95.5%) and specificity (99.6%) values were obtained using the BACTEC MGIT 960 System with the $L\ddot{o}wenstein$-Jensen culture method, which was also the only combination capable of detecting 100% of the nontuberculous mycobacteria.

Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage (생물막 여과반응기를 이용한 고도질소 제거법의 개발)

  • Jeong, Jin-Woo;Kim, Sung-Won;Tsuno, Hiroshi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

Design of double-clad, dispersion-compensating single-mode fiber with parabolic-index profile for $\lambda$=1.55 $\mu$m ($\lambda$=1.55 $\mu$m에서 포물선분포-이중클래드, 분산보상 단일모드 광섬유의 설계)

  • 김동각;김창민;이상배;강희전
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.134-141
    • /
    • 1997
  • We design the single mode dispersion-compensating fibers (DCF) which may be necessary for upgrading the previously installed 1.31 ${\mu}{\textrm}{m}$ optical communication system to the 1.55 ${\mu}{\textrm}{m}$ system. To obtain the optimum index profile that allows large negative dispersion at 1.55 ${\mu}{\textrm}{m}$, parabolic-index, double-clad fibers are analyzed by applying the 1-D FEM to the scalar wave equation of optical fibers. In constideration of macro-bending loss, the fibers are designed so that the cutoff wavelength of the $LP_{01}$ mode is greateer than 1.80 ${\mu}{\textrm}{m}$. The computer simulations show that the lower bound of the dispersion at 1.55 ${\mu}{\textrm}{m}$ is limited to about -120 ps/nm . km for the fiber index profiles satisfying the $LP_{01}$'s cutoff condition.

  • PDF

An analysis on the M/G/1 queueing model with multi-phase service (다중단계 서비스의 M/G/1 대기행렬에 대한 분석)

  • Kim, Jeong-Hyun;Hur, Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.66
    • /
    • pp.11-18
    • /
    • 2001
  • In this paper, we analyze an M/G/1 two-phase gated service model with threshold. We consider compound Poison arrival Process and general service time, where the server fives two different modes of services in order, batch and individual services. Server starts his service when the number of arrived customers reaches the predetermined threshold . We find the PGF of the number of customers in system and LST of waiting time, with which we obtain the means of them.

  • PDF

A Study of Circulating Water Channel (회유수조 제작 및 시험에 관한 연구)

  • CHANG Jee Won;HA Kang Lyeol;LEE Woon Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.8-14
    • /
    • 1985
  • A circulation water channel with observational section of $4m{\times}2.4m{\times}1m(length{\times}breadth{\times}depth)$ and the maximum channel flow speed of 2 m/sec was designed for model tests of fishing gears. It consists of 6 sections evenly divided for easy connection. Two observational acryl windows of $1.2m{\times}1.5m$ and 2cm thick are provided. Steel deflection plates, equally spaced in 20-40cm, are fixed at corners of the channel to reduce the loss of water pressure head through the channel. The flow in the channel is controlled by D.C. motor control system with 50 H.P. driving propeller system. A series of model testing capabilities for fishing gear have been examined and the results are as follows. 1) The speed of water flow was in the range from zero to 2.3 m/sec. 2) The difference between the velocity of channel flow along the center line and that along both sides in the channel was less than 0.2 m/sec.

  • PDF

Broadband energy harvester for varied tram vibration frequency using 2-DOF mass-spring-damper system

  • Hamza Umar;Christopher Mullen;Soobum Lee;Jaeyun Lee;Jaehoon Kim
    • Smart Structures and Systems
    • /
    • v.32 no.6
    • /
    • pp.383-391
    • /
    • 2023
  • Energy harvesting in trams may become a prevalent source of passive energy generation due to the high density of vibrational energy, and this may help power structural health monitoring systems for the trams. This paper presents a broadband vibrational energy harvesting device design that utilizes a varied frequency from a tram vehicle using a 2 DOF vibrational system combined with electromagnetic energy conversion. This paper will demonstrate stepwise optimization processes to determine mechanical parameters for frequency tuning to adjust to the trams' operational conditions, and electromagnetic parameters for the whole system design to maximize power output. The initial optimization will determine 5 important design parameters in a 2 DOF vibrational system, namely the masses (m1, m2 (and spring constants (k1, k2, k3). The second step will use these parameters as initial guesses for the second optimization which will maintain the ratios of these parameters and present electrical parameters to maximize the power output from this system. The obtained values indicated a successful demonstration of design optimization as the average power generated increased from 1.475 mW to 17.44 mW (around 12 times).

Sptimum Design of a Uniform Magnetic Field Exposure System for a Small-Sized Animal Study (자계 균일 공간 확보를 위한 소동물 실험용 5G급 자계 발생장치의 최적 설계)

  • 김상범;추장희;이동일;명성호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1194-1203
    • /
    • 2000
  • A magnetic field exposure system that generates 60 Hz magnetic fields from 1 mG to 5 G was designed and constructed for small-sized animal study. In order to investigate as many animals as possible at one series of test, uniform magnetic fields are required at wide living area of the animals. In this article, a cubic shaped field exposure system with three animal living floors was designed, which offers about 50 seating capacity. For calculation of magnetic fields inside the cage, a three-dimensional calculation program was developed. Using this, optimum electric current ratio of inner coil to outer coil and position of each coil were determined. Meanwhile, inductance of the exposure system was calculated for the design of power supply. The field measurement results of the manufactured exposure system showed that the difference between maximum and minimum magnetic field at the testing floors was less than 3%, which strongly demonstrated the field exposure system was good for small sized animal study.

  • PDF

Daily Operating Characteristics of Desalination System with Solar Energy (태양에너지 해수담수화 시스템 일일 운전 특성)

  • Kwak, Hee-Youl;Joo, Hong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.262-265
    • /
    • 2009
  • This study was carried out to evaluate the clear day operating performances for the decentralized desalination system with the solar thermal system and the photovoltaic power system. In a clear day, we used a solar thermal system as heat source of the single-stage fresh water generator with plate-type heat exchangers and a photovoltaic power system as electric source for hydraulic pumps. The demonstration system generation was designed and installed at Jeju-island in 2006. The system was comprised of the desalination unit with daily fresh water capacity designed as $2m^3$, a $120m^3$ evacuated tubular solar collector to supply the heat, a $6m^3$ heat storage tank, and a 5.2kW photovoltaic power generation to supply the electricity of hydraulic pumps for the heat medium fluids. In a clear day, solar irradiance daily averaged was measured $518W/m^3$, the daily fresh water yield showed that about 565 liter.

  • PDF

An experimental performance analysis of a cold region stationary photovoltaic system

  • Choi, Wongyu;Warren, Ryan D.;Pate, Michael B.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.1-28
    • /
    • 2016
  • A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a real-world application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be $4.37kWh/m^2$. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.

Collection Characteristics of Multi-layer Multi-stage Porous Plate System (다층 다단 다공성 플레이트 시스템의 집진 특성)

  • Kim, I.K.;Yoa, S.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.10-16
    • /
    • 2010
  • The main object of this study is to investigate the collection characteristics of multi-layer multi-stage porous plate system experimentally. The experiment is carried out to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as inlet velocity, tube diameter, inlet concentration, and stage number, etc. In results, the pressure drop becomes 22 to $115mmH_2O$ with increment of stage number (1 to 5) of porous plate system at tube velocity 15 m/s and tube diameter ${\Phi}8$. In case of fly ash and 5 stage, the collection efficiency becomes 90.5 to 95.7% increasing the tube velocity 12 to 15 m/s at inlet concentration $3g/m^3$ and tube diameter ${\Phi}8$. Additionally, it is estimated that the collection efficiencies of 5 stage are 94.3, 95.6 and 99.1% for fly ash, steel dust and based power, respectively (${\Phi}8$ tube, $V_t$ = 12m/s, inlet concentration $3g/m^3$).